
Informatics in Medicine Unlocked 23 (2021) 100513

Available online 12 January 2021
2352-9148/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

An intelligent multimodal medical diagnosis system based on patients’ 
medical questions and structured symptoms for telemedicine 

Hossam Faris a,b, Maria Habib b,*, Mohammad Faris b, Haya Elayan b, Alaa Alomari b 

a King Abdullah II School for Information Technology, The University of Jordan, 11942, Jordan 
b Altibbi (https://altibbi.com), Amman, Jordan   

A R T I C L E  I N F O   

Keywords: 
Altibbi 
Multimodal diagnosis 
Machine learning 
Natural language processing 
Deep learning 
Document embedding 
TF-IDF 
Feature extraction 
Digital health 
Telehealth 
Telemedicine 
Computer-aided diagnosis 
Arabic language 
MENA 

A B S T R A C T   

The massive increase in health-related digital data has revolutionized the power of machine learning algorithms 
to produce more salient information. Digital health data consists of various information, including diagnoses, 
treatments, and medications. Diagnosis is a fundamental service provided by healthcare agents for improving 
patient health. However, diagnosis errors result in treating the patient incorrectly or at an improper time causing 
harm to them. Computer-aided diagnosis systems are intelligent methods that help clinicians in making correct 
decisions by mitigating the potential of clinical cognitive errors. This paper proposes an intelligent diagnosis 
decision support system as part of a telemedicine 1 platform for serving the Middle East and North Africa (MENA) 
region. The proposed system utilizes a huge health-related dataset curated by the Altibbi company, which in-
cludes numerous unstructured patient questions written in different dialects of the Arabic language, and struc-
tured symptoms identified by general practitioners (GPs). The system encompasses a fusion of machine learning 
models trained based on two modalities: the symptoms and the medical questions of the patients. Various feature 
representation techniques (i.e., statistical and word embeddings) and machine learning classifiers, including 
Logistic Regression (LR), Random Forest (RF), Stochastic Gradient Descent Classifier (SGDClassifier), and vari-
ants of the Multilayer Perceptron (MLP) classifier have been used for experiments. The output of the combination 
of the two modalities has shown promising predictive ability in terms of the classification accuracy, which is 
84.9%. The obtained results indicate the potential of the model in predicting the diagnosis of possible patient 
conditions based on the given symptoms and patients’ questions, which consequently can aid doctors in making 
the right decisions.   

1. Introduction 

Digital medical and health informatics have significantly trans-
formed patients’ primary care through better healthcare coordination, 
patient involvement, and improved diagnoses. Differential diagnosis is 
the process of deciding the etiology of a disease by their symptoms when 
multiple diseases intersect. It is known to be highly complicated when 
the case is to detect infrequent diseases. Meanwhile, the early detection 
of a disease can result in a dramatic impact on a patient’s health. The 
World Health Organization (WHO) reported that approximately 5% per 
year of adults encounter diagnostic errors in high-income countries [1], 
while Mahumud et al. [2] proclaimed that nearly 850,000 diagnostic 

errors are reported annually from developed countries. Managing such 
clinical diagnosis uncertainty causes a problem, especially for inexpe-
rienced physicians or clinicians. Automating the process of diagnosis by 
computational techniques is a significant objective for online telehealth 
platforms. The benefits of automated computer-aided diagnosis systems 
are to make the clinical diagnosis available to all in real-time and save 
the doctors and patients effort and time. Diagnosis Decision Support 
Systems (DDSSs) provide clinicians with accurate information to address 
a condition. DDSSs have a considerable influence on promoting the 
accuracy of a targeted diagnosis and on improving therapeutic and 
patient-related decision-making. DDSSs can be classified as 
knowledge-based, non-knowledge-based, or a hybrid of them [3,4]. 
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Knowledge-based DDSS integrates a set of rules, which is known as the 
best practices addressing a condition in the literature. Whereas, the 
non-knowledge-based systems do not incorporate a predefined set of 
rules, but use machine learning algorithms to infer such rules from a 
large number of previously defined cases. On the contrary, the hybrid 
models integrate information from a predefined knowledge in medical 
sciences, as well as from learned knowledge of medical experiences. 

The problem of misdiagnosis has been argued to be a consequence of 
cognitive errors made by clinicians, where the statistics show that three 
out of four diagnostic errors are attributed to a deficit in cognitive biases 
and clinical reasoning [5]. DDSSs powered by artificial intelligence 
techniques are known to be the best approaches that include cognitive 
experiences and medical knowledge to produce better patient 
health-related decisions [6]. Artificial intelligence is a branch of science 
that imitates the natural intelligence of humans by machines, where the 
machines can think and infer knowledge without human intervention by 
utilizing meta-learning techniques, such as the machine learning 
methods. Developing such intelligent diagnostic models is critical for 
mitigating clinical errors, and essential in helping clinicians making the 
correct decisions at the right time. However, building efficient diag-
nostic systems requires the availability of a massive amount of relevant 
data to train and deploy them. Clinical and digital health platforms are 
rich resources of clinical raw data presented in various formats, 
including textual, auditory, or visual. Dealing with textual clinical data 
requires special methods capable of preprocessing and analyzing such 
data. Natural language processing techniques can handle and process 
textual data in order to generate representative features that capture 
hidden patterns of relationships. The learned features are deployed into 
learning algorithms to produce meaningful knowledge. Clinical natural 
language processing analyzes medical or clinical reports that consist of 
different information including the diagnosis and treatment, which is 
processed to infer such useful knowledge to aid clinicians in making 
decisions. 

The aim of this article is to automate the process of diagnosis by 
proposing an intelligent model to help doctors and clinicians in making 
the correct decision during the diagnosis process. The plan for this 
model is to assist clinicians in the MENA region, who speak the Arabic 
language. Natural language processing in the Arabic context is not trivial 
since Arabic is one of the most complex languages morphologically and 
phonologically. Also, the Arabic language has different forms, including 
the dialectical Arabic and modern standard Arabic, where the dialectical 
Arabic differs among countries, and though in the spelling and writing 
styles. Furthermore, one of the main challenges when working in the 
Arabic context is the lack of clinical and medical datasets especially in 
the case of the multi-dialect. However, in this paper, Altibbi is utilized as 
a case study, where the data is collected. Altibbi2 is a well-known digital 
health platform in the middle east and north Africa, which provides 
telemedicine services in the region. It has more than 2 million docu-
mented consultations, where all clinical notes are stored in its databases. 
One of Altibbi’s primary objectives is to develop a computer-aided DDSS 
to assist their clinicians and doctors in the diagnosis process, reducing 
potential errors, and making the process available in real-time, which is 
also the main inspiration and objective of this paper. Relying on their 
telemedicine services, more than 10,000 structured symptoms and more 
than 4,000 diagnoses were curated in order to build such an intelligent 
diagnostic tool. Typically, the curated data is textual data that requires 
prepossessing and analysis, which is a fundamental step toward building 
deployable artificial intelligence models. Fig. 1 illustrates the problem 
and the motivation behind it. 

This paper tackles the problem of identifying possible diagnoses by 
implementing a multimodal classification approach, which is based on 
machine learning algorithms. This model is expected to provide 
different advantages; first, providing a reliable diagnosis in the early 

stages of a disease, which is challenging since symptoms at the begin-
ning stages are either ambiguous or overlapping [7]. Second, the ability 
to integrate important information as the medical history or the allergies 
of a patient, where missing such information makes the diagnosis pro-
cess more complicated and results in a failure in differentiating the 
diseases correctly. Third, aids in mapping the clinical notes into their 
respective diagnosis based on the International Classification of Diseases 
(ICD), which is known to be cumbersome and error-prone [8]. 

The proposed classification model is a fusion of multiple modalities. 
Thus, it combines various information from multiple sources that act as a 
complementarity either at the data, feature, score, or decision levels. 
Integrating the data from multiple modalities can improve the efficiency 
of the learning algorithm. For example, to recognize the emotions of a 
person; a machine learning model can perform better when integrating 
data from facial expressions, speech, behavior, and the physiological or 
brain signals [9]. The proposed multimodal-based machine learning 
system depends on two modalities: patients questions, and symptoms 
identified by GPs. In this system, two independent machine learning 
models are developed for each modality then the results of the models 
are combined for the final predictions. The patients questions are 
handled by text vectorization techniques that represent the textual 
words by numerical values. These techniques include the Term 
Frequency-Inverse Document Frequency “TF-IDF” and hashing vector-
izer, which are mainly syntactical features. As well as, the embedding 
models (e.g., Doc2vec embedding), which extracts the semantics of 
documents. Whereas, the data of the symptoms is structured data rep-
resented by ICD-10 codes that are marked by the GPs for each medical 
consultation. Mapping the consultations into their correct diagnosis is 
formulated as a multi-class classification; where the One-Versus-Rest 
(OVR) approach is utilized. OVR is a heuristic algorithm that makes 
binary-based machine learning algorithms capable of handling 
multi-class classification problems. Different machine learning classi-
fiers have been used for experiments and compared independently based 
on each modality. The used classifiers are the LR, RF, SGDClassifier, and 
MLP classifier, which are discussed later in the paper. The final outputs 
of the two models are combined using different schemes; the ranking, 
summation, and multiplication. The proposed model is evaluated in 
terms of the accuracy, the inference and loading times, and the size of 
the classification model. The classification results of the proposed 
diagnosis model showed promising results that obtained an accuracy of 
84.9%. 

The main contributions of the proposed approach are:  

• Developing a diagnosis decision support system that is based on a 
fusion of two modalities: structured clinical information and un-
structured free-text consultations.  

• Developing a system that can serve the context of the multi-dialect 
Arabic, which is very complex and challenging. Subsequently, 
deploying the proposed system into the digital health platform 
(Altibbi); in order to aid Altibbi’s doctors in their diagnosis process 
efficiently and having correct decisions. 

The rest of the paper is organized in sections as follows. Section 2: 
Recent related works in differential diagnostic systems based on ma-
chine and deep learning. Section 3: The methodology is presented, 
including the data collection, as well as the preprocessing, the features 
extraction, the architecture of the proposed QSDM, and the evaluation 
criteria of the proposed approach. Whereas, Section 4: The experimental 
settings, the conducted experiments, and a discussion of results were 
provided. Finally, Section 5: The findings and suggestions for additional 
future works. 

2. Related works 

Developing computational-based intelligent systems to aid in clinical 
decision-making is of great advantage, as they can avoid potential errors 2 https://www.altibbi.com/. 
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and produce more reliable results. However, there are no such studies on 
diagnosis prediction particularly (differential diagnosis) due to the lack 
of needed datasets, especially in non-English contexts. It is worth noting 
that there are several research studies that proposed computational- 
based differential diagnostic tools (i.e., visualDX [10], Uvemaster 
[11], INTEGRA [12], and MED-TMA [13]). However, they were not 
concerned with the application of natural language processing. The 
attention of this article is for natural language processing in the Arabic 
context, therefore, this section reviews recent studies related to single or 
multiple diagnosis prediction in Arabic and other languages. 

2.1. Diagnosis of a single disease 

Different studies have applied artificial intelligence techniques for 
the diagnosis of a specific disease, for example, in Ref. [14], a natural 
language processing approach is used for screening pregnant women for 
any suicidal behavior. The authors used an online platform for accom-
plishing the analysis. However, the results were not much satisfactory, 
but the authors recommended the use of artificial intelligence to aid in 
the prognosis of suicide. In Ref. [15], the authors proposed a machine 
learning approach for predicting the utilization of radiology resources 
for the surveillance of Hepatocellular Carcinoma based on features 
extracted from radiology reports. Several feature representations and 
machine learning classifiers experimented. Where the TF-IDF and SVM 
achieved the highest accuracy (92%). Moreover, Xue et al. [16] con-
structed a decision tree-based model for the diagnosis of heart disease 
using EHRs and medical knowledge. The authors utilized pre-trained 
clinical word embeddings for training the decision tree algorithm, 
which obtained good performance results (accuracy of 89%). 

Liu et al. [17] proposed an approach based on natural language 
processing and machine learning for the identification of liver cancer 
from textual radiology reports in the context of the Chinese language. 
The authors constructed a lexicon and utilized the extracted features 
into different machine learning algorithms (i.e, SVM, LR, and RF). 
Markedly, the proposed model achieved an f1-score of 90%. Searle et al. 
[18] proposed a machine learning-based model for the diagnosis of 
Alzheimer’s disease based on features extracted from transcripts of 
spontaneous speech. The authors used a frequency-based (TF-IDF), and a 

distributed word representation (DistilBert) with SVM and LR. The 
(TF-IDF & SVM) as well as (DistilBert & LR) achieved very similar per-
formance, but the (DistilBert & LR) obtained the best results (f1-score =
88%). Moreover, Tong et al. [19] proposed an intelligent system for 
differentiating between the diagnosis of Ulcerative Colitis, Crohn’s dis-
ease, and Intestinal Tuberculosis in the context of the Chinese language. 
The authors developed the model based on textual descriptive data of 
images of colonoscopy, where the extracted features were the TF-IDF 
and a trainable Glove. Generally, CNN had a better performance when 
compared with RF. Küpper et al. [20] created a machine learning model 
for the detection of Autism Spectrum disorders based on the SVM al-
gorithm, and data collected from 673 adolescents. Even the model 
achieved good results, but the model was not generalizing well. Also, 
Elaziz et al. [21] created a machine learning diagnostic tool for the 
diagnosis of Coronavirus disease (COVID-19) using chest x-ray images. 
Two evolutionary algorithms were utilized for feature selection of at-
tributes extracted from the images, which then fed into KNN classifier. 
The sizes of the used datasets are approximately 1,800 and 1,500, which 
even their small size, they obtained an accuracy of 96% and 98%. 
Fathiet al. [22] proposed an intelligent approach based on a neuro-fuzzy 
method for the diagnosis of Leukemia, including acute Lymphoblastic 
Leukemia and myeloid Leukemia in children. However, the major 
concern was the lack of data which degrades the generalization power of 
the proposed model. Moreover, Chandra and Verma [23] designed a 
machine learning approach for the detection of Pneumonia using 
segmented lung chest X-ray images. The MLP and LR algorithms ach-
ieved the highest accuracy scores of nearly over 95%. However, the 
authors did not consider the scalability and model generalization 
problems. Yet, Aydin et al. [24] designed a machine learning method-
ology for the diagnosis of Appendicitis in children. They used the deci-
sion tree algorithm on 7,244 patients, which achieved 94.69% of 
accuracy. 

2.2. Diagnosis of multiple diseases 

In the last few years, several research papers have studied the 
application of natural language processing and machine learning for the 
prediction of diagnoses based on the Electronic Health Records (EHRs), 

Fig. 1. A description of the traditional and machine learning-based differential diagnosis system. On the left-side, the traditional process of diagnosis, where it is 
susceptible to behavioural or clinical errors or even late decisions. While on the right, the clinician decision is supported by a decision from a machine learning 
system that might be a multimodal system. 
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as well as the medical and clinical notes. For instance, considering the 
studies that concerned with the diagnosis of a different number of dis-
eases, Jacobson and Dalianis [25] proposed a deep learning-based 
approach for the prediction of healthcare infections in the Swedish 
context. They applied different stacked autoencoders and Restricted 
Boltzmann Machines (RBM) with different feature representations, i.e., 
Word2Vec and TF-IDF. The best performance in terms of f1-score was 
83% and was obtained by the (TF-IDF & RBM). In Ref. [26], the authors 
automated the classification of textual medical notes into the top 50 
frequent diagnoses based on the ICD-9. They applied word and 
character-level feature representations into LSTM with an attention 
mechanism. The model did not perform very well, however, the authors 
provided a discussion of potential limitations. Moreover, Guo et al. [27] 
constructed an approach for the detection of diseases based on textual 
symptoms extracted from Electronic Medical Records (EMRs). The 
extracted features are represented using TF-IDF and fed into a Bidirec-
tional LSTM (BiLSTM). The model achieved an Area Under the Curve 
(AUC) of 83% when applied to the Medical Information Mart for 
Intensive Care (MIMIC-III) database. In another paper, in Ref. [28], in 
the context of the French language, a deep learning-based method was 
implemented for the detection of health-related infections based on 
clinical narratives. A Convolutional Neural Network (CNN) was 
compared with other machine learning algorithms (e.g., Support Vector 
Machine (SVM) and Naïve Bayes (NB)) at different word vectorizations 
(i.e., Word2Vec, Bag-of-Word (BOW), TF-IDF, and Glove). The CNN 
outperformed machine learning algorithms by obtaining 97% of the 
f1-score. Also, Atutxa et al. [8] proposed a deep learning-based model 
for classifying diagnostic reports into their respective ICD-10 codes. The 
study was implemented for different contexts, including the Italian, 
French, and Hungarian. Different models were employed (i.e., CNN, 
Recurrent Neural Networks (RNN), and Transformers), where the fea-
tures were represented using the Word2Vec embeddings. The study 
obtained very good results in terms of f1-score (Italian (95%), French 
(83%), Hungarian (96%)). 

Furthermore, Nuthakki et al. [29] designed a neural network-based 
model for the identification of diagnoses from clinical notes using the 
MIMIC-III database. They classified the data into the top 10 and top 50 
frequent classes of the ICD-9 standard, using pre-trained feature repre-
sentations from the Wikitext103 dataset, and the LSTM classifier. The 
classification based on the top 10 classes obtained higher accuracy 
(80%) than the classification using the top 50. Similarly, in Ref. [30], the 
authors performed an automatic ICD-10 mapping of clinical documents. 
The BOW and TF-IDF were used and integrated into the SVM algorithm, 
while the Word2Vec was adopted with LSTM and CNN. The results 
demonstrated better performance for the deep learning classifier. 
Additionally, Kalra et al. [31] implemented an automatic classification 
approach for categorizing pathology reports into different diagnoses. 
The authors used TF-IDF, where the extracted features were fed into 
linear SVM, XGBoost, and LR. The findings revealed that the XGBoost 
classifier performed the best in terms of f1-score (92%). In another 
paper, Obeid et al. [32] implemented an automated detection method of 
the mental status using data reported from an emergency department 
provider. Different models were compared, including machine learning 
(e.g., SVM, NB, RF) and deep learning (e.g., CNN), as well as various 
features representations (e.g., TF-IDF, pre-trained Word2Vec, and 
non-trainable Word2Vec at different dimensions). The deep learning 
model achieved the best performance, where the accuracy was 94.5%. 
Moreover, Morillo et al. [33] developed a web-based framework based 
on machine learning for the diagnosis of mental disorders. The tool re-
ceives a set of symptoms and maps it into a suitable disorder based on 
ICD-10 codes. The authors trained the K-Nearest Neighbor (KNN) clas-
sifier using the TF-IDF feature vectorizer. However, the training dataset 
was relatively small. 

Also, Castellazzi et al. [34] proposed a machine learning model for 
the diagnosis of Alzheimer’s disease and Vascular Dementia, where the 
artificial neural network, SVM, and adaptive neuro-fuzzy inference 

system were used. The adaptive neuro-fuzzy inference system has ach-
ieved the highest accuracy of 84%. Furthermore, Poletti et al. [35] 
developed a machine learning model for the diagnosis and prediction of 
mood disorders of major depressive disorder, and bipolar disorder. The 
proposed model was based on hierarchical logistic regression. Even the 
used dataset was relatively small, but the model could achieve a score of 
the area under the curve of 97%. In addition, Fernandes et al. [36] 
trained a machine learning model for the detection of Schizophrenia and 
bipolar disorder. The implemented model integrates multi-domain data 
of immune and inflammatory biomarkers of 416 conditions. The model 
achieved a sensitivity and specificity of 71% and 73%, respectively. Liu 
et al. [37] proposed a deep learning system (deep CNN) for differential 
diagnosis of skin diseases based on 16,114 cases. It showed the ability to 
recognize 26 skin conditions, yet, predict other 419 conditions. The 
model achieved 66% of top-one accuracy, while the accuracy of three 
certified dermatologists was 63%. Also, Oktay and Kocer [38] created a 
Convolutional Long Short-Term Memory (LSTM) for performing a dif-
ferential diagnosis of Parkinson tremor and essential tremor. Combining 
the postural and resting positions achieved an accuracy of 90% when 
tested on 40 subjects. Born et al. [39] developed a deep learning 
approach for the differential diagnosis of COVID-19 based on ultrasound 
images. The aim of the model was to classify the images into COVID-19, 
Pneumonia, and healthy cases, which achieved an accuracy higher than 
90%. Table 1 presents a summary of related papers. 

Overall, the previous studies demonstrated potential efforts devoted 
to implementing differential diagnosis systems to promote clinicians’ 
decision-making. Whilst, they also disclosed the lack of such systems in 
the context of the Arabic language. This implies the need for additional 
research studies to advance clinical diagnosis decision support systems 
in the MENA region. 

3. Methodology 

This section presents the stages of the conducted methodology, 
which consists of the data collection and preprocessing, features 
extraction in the case of the questions, the development of the classifi-
cation model, and the evaluation of the model. Fig. 2 shows an overview 
of the methodology. 

3.1. Data collection and preprocessing 

The total collected data from Altibbi is 263,867 questions (consul-
tations) that are accompanied by symptoms and diagnoses. The total 
number of symptoms is 7,324, while the diagnoses are 7,410. Each 
consultation is accompanied by multiple symptoms and multiple di-
agnoses even that some of them infrequently occur. Primarily, the di-
agnoses that are repeated less than 20 times over the consultations were 
removed. Subsequently, the resultant consultations of no diagnosis were 
removed. Hence, the final number of consultations is 246,814, and the 
number of diagnoses is 1,206. Fig. 3 shows the number of consultations 
in relation to the number of diagnoses. It is clear that most of the con-
sultations are of one diagnosis. Meanwhile, several preprocessing steps 
are utilized to clean and prepare the data for the prediction model. 

In the case of the symptom data, each symptom is a binary feature 
that reflects if it exists in the respective question or not. Similarly are the 
diagnoses, each diagnosis is a class label of a binary value, where 1 
means exists, and 0 does not exist. The final records of data of the 
symptoms are multi-labeled of a various number of diagnoses. In the 
case of the questions, the questions were preprocessed by various nat-
ural language processing, including the elimination of non-Arabic 
phrases, numbers, special symbols, diacritics, hyperlinks, punctuation, 
and the removal of Arabic stop-words and negation words. In addition to 
the normalization of some Arabic characters. All questions were stem-
med by using the light ISRI Arabic stemmer from the Natural Language 
Toolkit (NLTK) [40], and tokenized by the NLTK tokenizer. 
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3.2. Feature extraction 

Primarily, extracting features from the textual data is done by vec-
torization. Vectorization is the process of transforming textual docu-
ments into numerical feature vectors. In the literature, several 
approaches have been proposed, such as TF-IDF, hashing vectorizer, and 
the word embeddings, as described in the subsequent subsections. 

3.2.1. TF-IDF vectorizer 
The TF-IDF is a textual vectorization technique that utilizes a 

weighting term to better represent the infrequent words in a corpus and 
decreases the influence of the frequent non-informative words. Since the 
existence of irrelevant features mislead the learning process and de-
teriorates the performance. The TF-IDF is defined by the cross-product of 
the Term Frequency (TF) and the Inverse Document Frequency (IDF) 
(TF-IDF = TF × IDF). TF is the proportion of the occurrences of term k 
over the number of unique words n in the dataset as in Equation (1). The 
IDF is the inverse document frequency that presents the frequency rate 
of a term across all documents (as in Equation (2)), where dn is the 
number of documents, and dfk is the number of documents that contain 
the term k. Hence, the frequent words will have a low TF-IDF scoring and 

Table 1 
Summary of related works.  

Reference Language Objectives Techniques 
applied 

Performance 
evaluation 

[14] English Screening 
pregnant 
women to 
predict suicidal 
behaviors 

The clinical 
Text Analysis 
and Knowledge 
Extraction 
System 

486 pregnant 
women were 
diagnosed 
positive for 
suicidal 
behavior, 
among whom 
146 had 
confirmed 
suicidal 
behavior. 

[15] English The prediction 
of 
hepatocellular 
carcinoma 

TF-IDF, SVM Accuracy =
92% 

[16] English The diagnosis of 
heart disease 

DT algorithm Accuracy =
89% 

[17] Chinese The 
identification of 
liver cancer 
from textual 
radiology 
reports 

SVM, LR, and 
RF 

F1-score =
90% 

[18] English The diagnosis of 
Alzheimer’s 
disease 

TF-IDF SVM, 
DistilBert LR 

F1-score =
88% 

[19] Chinese The diagnosis of 
Ulcerative 
Colitis and 
Crohn’s disease 

TF-IDF, Glove, 
CNN, RF 

sensitivities =
99%, 
specificities =
97% 

[20] English The detection of 
autism spectrum 
disorders 

SVM algorithm Adolescents ¡ 
= 21 the AUC 
= 90% and 
Adolescents 21 
the AUC =
84% 

[21] English The diagnosis of 
Coronavirus 
disease (COVID- 
19) 

Fractional 
Multichannel 
Exponent 
Moments 
(FrMEMs) and 
KNN 

accuracy of 
96% and 98% 
for two 
different 
datasets. 

[22] English The diagnosis of 
leukemia 

Neuro-fuzzy 
method 
(ANFIS), 
(GMDH) and 
the principal 
component 
analysis (PCA) 

RMSE =
0.0865, MSE 
= 0.007 

[23] English The detection of 
Pneumonia 

MLP, LR Accuracy of 
95.63% 

[24] English The diagnosis of 
appendicitis in 
children 

DT algorithm Accuracy of 
94.69% 

[25] Swedish The prediction 
of healthcare 
infections 

Stacked 
autoencoders 
and RBM 

F1-score =
83% 

[26] English Automating the 
classification of 
textual medical 
notes into ICD-9 

Word and 
character-level 
embeddings and 
LSTM 

F1-score =
53%, AUC =
90% 

[27] English The detection of 
diseases based 
on textual 
symptoms from 
EMR 

TF-IDF and 
BiLSTM 

AUC = 83% 

[28] English The detection of 
health-related 
infections 

CNN, SVM, NB, 
TF-IDF, BOW, 
Word2Vec, 
Glove 

F1-score =
97% 

[8] Italian, 
French, 

Classifying 
diagnostic 

CNN, RNN and 
Transformers 

F1-score =
Italian (95%), 
French (83%),  

Table 1 (continued ) 

Reference Language Objectives Techniques 
applied 

Performance 
evaluation 

and 
Hungarian 

reports into ICD- 
10 

Hungarian 
(96%) 

[29] English Classifying 
clinical notes 
into ICD-9 

LSTM Accuracy =
80% 

[30] English Automatic ICD- 
10 mapping of 
clinical 
documents 

BOW + TF-IDF 
and SVM, 
Word2Vec +
CNN and LSTM 

Accuracy =
72.02% 

[31] English Automatic 
categorization 
of pathology 
reports into 
different 
diagnoses 

TF-IDF, SVM, 
XGBoost, LR 

F1-score =
92% 

[32] English Automated 
detection 
method of the 
mental status 

SVM, NB, RF, 
CNN, 
Word2Vec, TF- 
IDF 

Accuracy =
94.5% 

[33] English The diagnosis of 
mental disorders 

KNN, TF-IDF Accuracy =
95.7% 

[34] English The diagnosis of 
Alzheimer’s 
disease and 
vascular 
dementia 

SVM, ANN, 
ANFIS 

Accuracy =
84% 

[35] English The prediction 
of mood 
disorders of 
major 
depressive 
disorder, and 
bipolar disorder 

Hierarchical LR AUC = 97% 

[36] English The detection of 
schizophrenia 
and bipolar 
disorder 

PCA, 
Traditional 
inferential 
statistics 

sensitivity =
71%, 
specificity =
73% 

[37] English The differential 
diagnosis of skin 
diseases 

Deep CNN 
(Inception-v4) 

Top-one 
accuracy =
66% 

[38] English The differential 
diagnosis of 
Parkinson 
tremor and 
essential tremor 

Deep 
convolutional 
LSTM 

Accuracy =
90% 

[39] English The differential 
diagnosis of 
COVID-19 

VGG, VGG- 
CAM, 
NASNetMobile 

Accuracy =
90%  
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vice versa. 

TF=
nk

n
(1)  

IDF= log2

(
dn

dfk

)

(2)  

3.2.2. Hashing vectorizer 
The hashing vectorizer is a technique implemented by the scikit- 

learn library [41] to create a matrix of token occurrences. A key 
feature of it is that the generated unique textual tokens are not stored in 
the memory but mapped into special column indexes by hashing, where 
its value is the token count. The hashing is performed by using the 
MurmurHash, which is a non-cryptographic hash function [42]. Hashing 
the tokens has boosted the performance and reduced the used memory 
especially when dealing with large datasets. However, a limitation of the 
hashing vectorizer is that the method cannot retrieve the original words 
from the column indexes. 

3.2.3. Document embeddings 
Document embeddings are an extension of word embeddings, which 

in contrast represent each document as a vector. A document can be a 
short text (i.e., tweet, question), a paragraph, or an article. In this 

respect, word embeddings are distributed word representations that are 
created by predictive neural-based models. The main advantage of it is 
its ability to encode the semantic relationships of words in a corpus by 
denser vector representations. Hence, it is emerged based on the idea 
that similar words that appear in the same context, will have similar 
representations, and high similarity scores. A well-known model for 
creating word embeddings is Word2Vec that is developed by Google 
[43]. Word2Vec uses a shallow neural network to create the embeddings 
where the embedding length represents the number of the hidden layers, 
which is a hyperparameter to be optimized. Word2Vec has two training 
structures; the Continuous Bag-of-Words (CBOW), and the Skip-Gram 
(SG). The former takes a set of context words; in order to predict a 
target word, while the latter, uses the target word in order to predict the 
context words. CBOW is more efficient in representing frequent words, 
while the SG model is better in encoding the infrequent words. 

On the other hand, Doc2Vec is a document embedding model that is 
also created by Google [44]. The Doc2Vec model encompasses the word 
vectors as well as a document vector. Each document has a unique 
randomly-initialized vector identifier, while the words’ vectors might be 
shared among the documents. The document vector and the words 
vectors are concatenated or averaged in order to create the final docu-
ment’s embedding. Thereby, the embedding of a document can be 
learned by two different training models: the Distributed Memory Model 
of Paragraph Vectors (PV-DM), and the Distributed Bag-of-Words model 
of Paragraph Vectors (PV-DBOW). The former is similar to the CBOW, 
where it predicts and remember a target from the context via a stochastic 
gradient descent and back-propagation. Whereas, the latter is analogous 
to the SG model, where it uses the document’s vector to learn and 
classify a set of words whether they belong to the current document or 
not. 

3.3. Question-symptom-diagnosis model (QSDM) 

Primarily, this section describes the procedure of developing the 
QSDM approach. The QSDM is a fusion of two modalities: the first an-
alyzes the symptoms and classifies them into four possible diagnoses. 
The number of suggested diagnosis is set to four as to match the doctors’ 
preference, since suggesting more than four will be distracting. The 
second is the question classification modality that predicts maximally 
four potential diagnoses, where the final prediction depends on 
combining the results of the two modalities. The structure of the 

Fig. 2. An overview of the proposed methodology.  

Fig. 3. The relationship between the number of consultations and the number 
of diagnosis. 
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symptoms and question modalities relies on machine learning algo-
rithms as will be discussed in the following subsections. 

3.3.1. Logistic regression 
LR is a statistical and linear machine learning algorithm for the 

classification [41], which is popular in the medical and natural language 
processing applications [45,46]. It uses a logistic function to model the 
relationships between the independent variables and a dichotomous 
dependent variable. The logistic function is a Sigmoid (S-shaped) func-
tion that takes a value and transform it into a class label, (see Equation 
(3)), where X is the input value to be transformed and e is the base of the 
natural logarithms. Mainly, it takes as input the feature vector X = x1,

x2,…,xn, where n is the number of features (independent variables) and 
classifies them into a set of classes C = c1,c2,…,ck, where k is the number 
of classes. 

f (x)=
1

1 + eX
(3) 

The implementation of LR in scikit-learn library is regularized by 
default with various regularizers. 

3.3.2. Random forest 
RF is an ensemble learning method [47], which is a collection of 

decision tree classifiers that produce predictions. Each decision tree is 
constructed based on a different set of features that are drawn from the 
original feature set. Based on the predictions from all trees, the 
highly-voted class is considered as the final prediction. The Key ad-
vantages of the RF algorithm are its ability to avoid overfitting and to 
perform relative features importance. 

3.3.3. Stochastic gradient descent 
The SGDClassifier is a linear classifier implemented by the scikit- 

learn library that is regularized and trained by the Stochastic Gradient 
Descent (SGD). The SGD is an optimization algorithm that tunes the 
algorithm’s parameters in order to minimize the cost function. The 
gradient of the loss function is computed for one random sample each 
time with a decreasing learning rate, which is faster than the gradient 
descent that considers the whole dataset while tuning the parameters. 

The input of the model is sparse and dense arrays of features in the 
form of (n samplesn features), where the default model it fits is the linear 
SVM (by setting the loss to hinge). SGDClassifier supports various pen-
alties, including the L1, L2, and the ElasticNet. 

3.3.4. Multilayer perceptron 
The MLP is a multilayer artificial neural network, which is con-

structed from a set of neurons distributed over a stack of layers. The 
perceptron is the simplest structure of the neural network that consists of 
two layers (hidden and output layers). The data flow through the input 
layer to the hidden layers and then to the output layer in one direction. 
The MLP is a well-known machine learning algorithm that performs a 
non-linear mapping of the input to the output via the non-linear acti-
vation part of a neuron. Each neuron has weights and bias parameters 
through which the network learns. The layered structure of neural 
networks empowers them to capture hierarchical hidden representa-
tions within the data when learning and back-propagating the infor-
mation. During the training, each neuron performs a summation (of the 
weights w and input I with the bias β) as in Equation (4), where n is the 
number of input neurons. Whereas, the output (S) is activated by a non- 
linear function f(x) (e.g. Sigmoid function). Thereby, the final output yi 
is obtained by fj(Sj). 

Sj =
∑n

i=1
ωijIi + βj (4)  

fj(x)=
1

1 + e− Sj
(5) 

MLP has been applied successfully in various applications, such as 
object detection [48], financial forecasting [49], fraudulent detection 
[50], medical diagnosis [51], and other [52,53]. 

3.3.5. Multi-class classification 
Multi-class classification problems have naturally more than two 

classes to differentiate between. The problem is that the machine 
learning algorithms either originally developed to support binary clas-
sification (e.g., LR, SVM), or cannot handle the multi-class problem. 
However, various methods have been developed to handle the problem, 
which typically stands on transforming the problem into multiple binary 
classification problems. Such approaches are the One-Versus-One 
(OVO), and OVR. The OVO technique divides the problem into multi-
ple binary classifications, where each pair of classes is considered a 
problem. Therefore, the total number of Classification Problems (CP) is 
given as in Equation (6), thus, the final output is a majority vote from all 
constructed classifiers. Nc is the total number of classes. A major 
drawback of this technique is that the increasing complexity when 
having a large number of classes. 

CP=
Nc × (Nc − 1)

2
(6)  

Whereas, the OVR method divides the problem into a set of binary 
problems, where the number of constructed binary problems equals to 
the number of classes. Each problem classifies one class against the rest 
(Nc − 1) classes, while the final prediction accounts for the one that has 
the best confident results. Fig. 4 illustrates the OVR technique. 

3.3.6. System architecture 
Mainly, the QSDM is a fusion of two parts: the symptom detection 

model and the questions model, as shown in Fig. 5. The objective of 
combining the two modalities is to improve the results of the questions 
model by aggregating informative features from the symptoms model. 
The symptom model includes all symptoms as binary features, hence, it 
involves the set of all unique symptoms from the questions (which are 
7,324 features). The unique diagnoses are the set of labels (1,206), 
which are represented by binary values. The symptom data is divided 
into 80% for training, and 20% for testing. The data is fed into various 
machine learning models, including LR, RF, SGDClassifier, and MLP 
classifiers. The training set is used to build the learning models, while 
the testing set is used for evaluating their performances. The developed 
models are based on the OVR method to deal with the multi-class clas-
sification. Each model is trained and tested individually. Though, the 
final predicted diagnoses are taken from the best performing classifier of 
this sub-model. 

For the questions model, several feature extraction methods were 
utilized separately (TF-IDF, hashing vectorizer, and document embed-
ding), where the document embedding is implemented via the Doc2Vec. 
The three generated datasets are divided into (80%, and 20%) for 
training and testing, respectively. Meanwhile, they are fed into the four 
classifiers through OVR. Next, the result of the best performing classifier 
is selected as the final predictions of the questions model. 

Combining the results of the two models can be performed by 
different fusion criteria, including the multiplication, the ranking, and 

Fig. 4. The OVR technique. Each box presents a binary classification problem, 
where the colored points represent the other classes. 
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the summation. In other words, for the multiplication, it takes the pre-
dicted probabilities of the two models (symptoms and questions) and 
performs an arithmetic multiplication between them, which then 
returns the highly-scored diagnoses. Similarly is for the summation, 
where the fusion is achieved by an arithmetic addition. Whereas, for the 
ranking, the highly-ranked diagnoses (based on the highest accuracy) 
are selected. In the ranking case, the results were reported in two cases; 
case one is when there is no repetition of diagnoses from the two models, 
and if existed (case two), the repeated diagnoses were removed and 
alternatives were taken from the model of the higher predictive power. 

The results of the two modalities (symptoms and questions) were 
combined together to generate the final output. 

3.4. Evaluation criteria 

Four quantitative evaluation measures were considered for assessing 
the performance of the QSDM model; which are the accuracy at different 
precision levels, the model size, the model loading time, and the infer-
ential time. The accuracy is the ratio of the correct diagnoses out of the 
total number of the respective diagnoses (m), which is defined by 
Equations (7) and (8). In Equation (7), PV represents the probabilities of 
all diagnoses, where V = [v1,v2, ..vn], given that n equals the number of 
unique diagnoses. In Equation (8), y is the actual diagnosis of the con-
sultations, and x is the predicted diagnosis. Where (m) is the number of 
considered diagnoses that is four. P is the probabilities of all diagnoses, 
and j is the diagnosis index. 

argmax PV ={v| if v> z, ∀z∈V ∧ z∕= v} (7)  

Accuracy=
1
m

∑m

i

{
f (x)= 1

⃒
⃒ x= argmax(PX) ∧

(
xj = yj

)}
(8) 

The accuracy is presented in terms of its precision. For example, the 
accuracy at precision one means that how much the algorithm is precise 
in retrieving at least one correct diagnosis out of the respective truth 
diagnoses. This is referred to as Precision_1. Precision_2 indicates the 
model ability to find at least two correct diagnoses, while Precision_3 
refers to finding at least three diagnoses. 

The model size is an important measure, especially, knowing that 
increasing the size of the model (e.g., increasing the number of hidden 
layers in a deep learning model) will in consequence improve the 
model’s performance. However, it is critical since it might degrade the 
efficacy in situations where the infrastructure is limited. In addition, the 
loading time and the inferential time are two relevant metrics indicating 
the efficiency of the model in generating real-time predictions. The 
loading time corresponds to the needed time for deploying the model on 
the web, while the inferential time is the needed amount of time for 
performing a prediction. 

Fig. 5. Representation of QSDM system architecture.  
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4. Experiments and results 

4.1. Experimental settings 

The experiments were implemented by using Python version (3.7.3). 
The hosting machine is a cloud server that is running Ubuntu-1804- 
bionic-64, the memory capacity is of 64 GB, and the processor is Intel 
(R) Core (TM) i7-7700, the processor speed is 3.6 GHz, while the GPU is 
GeForce GTX 1080 of 8 GB. 

All algorithms have been implemented based on the scikit-learn li-
brary. Regarding the LR algorithm, the penalty is the L2 − regularizer, 
and the maximum number of iterations is 500. For the RF, the number of 
trees is 100, the Gini − index was used for the evaluation of the split, and 
the maximum number of features for the split was determined by 

̅̅̅̅
fn

√
, 

where fn is the number of features. In the case of the SGDClassifier, the 
loss function was set to log to provide probabilities for the output, the 
penalty is l2 − regularizer, α = 0.0001, the maximum iterations are 
1000, and the learning rate is defined by 1.0/(α *(t + t0)), where t0 is a 
predefined constant, and t is the time step. The settings of the MLP 
classifier were the defaults based on the scikit-learn library. In which, 
the activation is based on the Relu function, the optimizer is Adam, the 
learning rate is a constant (0.001), the maximum number of iterations is 
200, and the hidden layer size has experimented at 10, 20, 30 and 40, 
where after this the performance no longer improving. 

For the document embeddings, the experiments were implemented 
depending on Keras deep-learning framework [54], which built on the 
top of TensorFlow 2.0 [55]. The Doc2Vec model was utilized, for which 
the maximum number of epochs is 50, the embedding dimension is 500, 
the learning rate is 0.025, and the window size is three. The training 
structure of Doc2Vec is set based on the distributed memory model 
(PV-DM). 

4.2. Questions modality-based results 

Regarding the questions module, this subsection provides a com-
parison between the classifiers at different feature extraction methods, 
including the TF-IDF vectorizer, the hashing vectorizer, and the docu-
ment embeddings. Table 2 presents the performance in terms of accu-
racy for the four algorithms based on the TF-IDF vectorizer. It is clear 
from the table that all algorithms achieved better results when predicted 
correctly at least one diagnosis (denoted by Precision_1). From the table, 
the LR algorithm was the best performing classifier that obtained 
(46.7%). The MLP (10) achieved a very good accuracy of 45.2%, even 
that it revealed a slight decline in comparison with LR. The MLP (20) 
and MLP (30), yet could achieve quite good results of (44.0%, 41.4%), 
respectively. However, the SGDClassifier performed the least (33.5%). 
Regarding the situation to predict at least two correct diagnoses (Pre-
cision_2), also the LR performed the best (40.4%), then the MLP (10) and 
MLP (20) by having (38.9%, 38%, respectively). Similarly is at pre-
dicting at least three correct diagnoses (Precision_3), the LR obtained the 
best accuracy (39%), then MLP (10), and MLP (20) which had an ac-
curacy of 37.9%, and 37%, respectively. 

Such important aspects to consider when developing a machine 

learning model is its size, the required time to deploy it on the web, and 
the inferential time to perform a prediction. In this regard, in terms of 
the M.S., the MLP (10) had a minimum size of 5.2 MB, while the RF was 
the highest of 17,300 MB. When considering the loading time, the MLP 
had the lowest time of 0.35 s. Whilst, at the prediction, the fastest al-
gorithms were the LR and the SGDClassifier, which were needed 0.06 s 
to perform a prediction. Although the MLP classifiers had the least 
model sizes as well as the least loading times, the LR can achieve a 
higher accuracy score. However, this makes the MLP classifiers more 
preferable for a decision-maker who prioritizes the size and the time 
more than the accuracy. 

Further, Table 3 presents the classifiers’ performance when consid-
ering the hashing vectorizer, which also exhibits that the best per-
forming classifier was the LR algorithm. The LR accomplished the best 
accuracy at various precision levels (Precision_1, Precision_2, and Pre-
cision_3) by having 45.6%, 39.4%, and 38.3%, respectively. Comparing 
the LR at the TF-IDF, and at the hashing vectorizer, it is noticeable that 
there is a slight decline of approximately 1%. For example, it dropped 
from 46.7% to 45.6% at Precision_1. Moreover, the RF, the SGDClassi-
fier, and the MLP classifiers have experienced a small reduction in the 
accuracy as well, at Precision_1. This is in contrast to the SGDClassifier 
that showed a slight increase in the accuracy of 34.7%. Also, the same is 
at Precision_3, which raised up to 28.1%. Overall, all classifiers gained a 
better accuracy at Precision_1 in comparison with Precision_2 and 
Precision_3. 

Remarkably, in terms of the pickling size, the MLP classifiers had the 
least model sizes, where the MLP (10) had a minimum of 2.7 MB, while 
the RF had the largest size of 14,700 MB. Subsequently, regarding the 
RF, as it had the largest size, it also had the highest loading and infer-
ential times of 27.45 and 128.1 s, respectively. On the contrary, the MLP 
(10) had a minimum loading time of 0.31 s, which also quite relative to 
the other MLP classifiers. In terms of the inferential time, the 
SGDClassifier had the lowest inferential time of 0.35 s, while the MLP 
classifiers had on average a 0.49 s. To this end, the LR accomplished the 
best in terms of accuracy, while the MLP classifiers can achieve better 
regarding the prediction and loading times. Yet, the SGDClassifier is the 
fastest at prediction. 

Regarding the Doc2Vec embedding, it is clear from Table 4 that the 
MLP classifiers performed the best when predicted 25%, 50%, and 75% 
of the diagnoses. The MLP (40) obtained the best by having 30.3%, 25%, 
and 24.4%, respectively. It can be seen that MLP (20) and the LR ach-
ieved almost the same performance in terms of accuracy. However, the 
MLP (20) had a lower model size, and lower loading and inferential 
times, which give them a higher privilege over the LR. Additionally, 
even that the SGDClassifier performed as closely as the MLP (10), but the 
MLP also had a better performance in terms of the model size and the 
inferential time. Further, it is obvious that the RF failed to achieve any 
better results neither at the accuracy nor the model size nor the loading 
and inferential times. 

Further, regarding either the model size, the loading, or inferential 
times, the MLP classifiers achieved the best results. For instance, the 
MLP (10) had the minimum pickling size (0.448 MB) and the minimum 
inferential time (0.020 s). Whereas the MLP (40), yet can have a 

Table 2 
The accuracy measure, M.S. (MB), L.T. (seconds), and I.T. (seconds), for LR, RF, SGDClassifier, and MLP classifiers based on TF-IDF vectorizer.  

Classifier Accuracy M.S. L.T. I.T. 

Precision_1 Precision_2 Precision_3 

LRovr 0.467 0.404 0.391 95 0.710 0.060 
RFovr 0.392 0.331 0.327 17,300 45.89 128.3 
SGDClassifierovr 0.335 0.279 0.274 187 0.420 0.060 
MLP (10) 0.452 0.389 0.379 5.2 0.350 0.550 
MLP (20) 0.440 0.380 0.370 7.9 0.350 0.550 
MLP (30) 0.414 0.355 0.346 10.6 0.350 0.550 
MLP (40) 0.386 0.328 0.320 13.3 0.350 0.550  
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relatively small model size (1.7 MB), and a fast prediction ability of 
(0.02 s). Even the document and word embeddings alongside the MLP 
classifiers can produce very good results, but it is expected that 
increasing the amount of training data will in consequence improve the 
results as well. This is considered by the authors as a next step to utilize a 
larger training dataset. 

4.3. Symptoms modality-based results 

Table 5 shows the results of the symptoms modality based on LR, RF, 
SGDClassifier, and four variants of MLP regarding the accuracy, model’s 
size, inferential time, and loading time. It is clear from the table that the 
MLP (40) achieved the highest accuracy at the precision_1, precision_2, 
and precision_3, while the SGDClassifier achieved the worst. For 
instance, regarding the accuracy at precision_1, the MLP (40) obtained 
85.2%, whereas, the SGDClassifier obtained 74.3%. Regarding the 
model’s size, generally, the MLP has a smaller model size than the LR, 
RF, or the SGDClassifier. Similarly, in terms of the loading and infer-
ential times, the MLP achieved the best performance by having 0.02, and 
0.31 s, respectively. Even that the RF classifier, achieved the highest 
model size and loading and inferential times, which was expected since 
it has higher computational complexity than the other classifiers. 

4.4. Results of fusion-based prediction 

This subsection shows the results after combining the predictions of 
the questions with the predictions of the symptoms. The fusion of the 
two modules has shown powerful capability in improving the prediction 

results and providing more reliable differential diagnosis. 
Table 6 shows the performance of the final combined models, where 

it describes the accuracy scores when predicting 25%, 50%, and 75% of 
the diagnoses (denoted by Precision_1, Precision_2, and Precision_3) 
across four fusion criteria (Ranking-I, Ranking-II, Summation, and 
Multiplication). It is clear that the best-obtained accuracy was at Pre-
cision_1. However, the fusion that is based on the multiplication, 
accomplished the best accuracy score of 84.9%, then the summation 
(84.6%), next is Ranking-I, and Ranking-II by having 82.8%, and 81.3%, 
respectively. Furthermore, even that Precision_2 and Precision_3 are 
relatively close in their performance, but there is a clear dramatic dif-
ference between Precision_3 and Precision_1. 

4.5. Qualitative evaluation 

For further assessment of the developed system, a qualitative anal-
ysis based on expert evaluation is conducted. The experts are specialized 

Table 3 
The accuracy measure, M.S. (MB), L.T. (seconds), and I.T. (seconds), for LR, RF, SGDClassifier, and MLP classifiers based on hashing vectorizer.  

Classifier Accuracy M.S. L.T. I.T. 

Precision_1 Precision_2 Precision_3 

LRovr 0.456 0.394 0.383 92 0.380 0.550 
RFovr 0.377 0.318 0.301 14,700 27.45 128.1 
SGDClassifierovr 0.347 0.290 0.281 92.8 0.380 0.350 
MLP (10) 0.427 0.366 0.356 2.7 0.310 0.480 
MLP (20) 0.428 0.368 0.358 5.4 0.320 0.490 
MLP (30) 0.402 0.343 0.335 8.1 0.320 0.490 
MLP (40) 0.376 0.318 0.310 10.8 0.320 0.490  

Table 4 
The accuracy measure, M.S. (MB), L.T. (seconds), and I.T. (seconds), for LR, RF, SGDClassifier, and MLP classifiers based on Doc2Vec embeddings.  

Classifier Accuracy M.S. L.T. I.T. 

Precision_1 Precision_2 Precision_3 

LR_ovr 0.292 0.240 0.235 5.6 0.350 0.050 
RF_ovr 0.105 0.078 0.061 502 1.820 0.810 
SGDClassifier_ovr 0.267 0.217 0.212 5.8 0.340 0.050 
MLP (10) 0.266 0.216 0.211 0.448 0.330 0.020 
MLP (20) 0.294 0.242 0.236 0.848 0.310 0.020 
MLP (30) 0.300 0.249 0.243 1.3 0.310 0.020 
MLP (40) 0.303 0.250 0.244 1.7 0.320 0.020  

Table 5 
The accuracy measure, M.S. (MB), L.T. (seconds), and I.T. (seconds), for LR, RF, SGDClassifier, and MLP classifiers based on the symptoms model.  

Classifier Accuracy M.S. L.T. I.T. 

Precision_1 Precision_2 Precision_3 

LRovr 0.847 0.820 0.809 72 0.370 0.080 
RFovr 0.848 0.818 0.806 1254 3.700 1.100 
SGDClassifierovr 0.743 0.704 0.691 72 0.470 0.100 
MLP (10) 0.820 0.773 0.761 2.1 0.310 0.020 
MLP (20) 0.848 0.812 0.801 4.1 0.310 0.020 
MLP (30) 0.851 0.818 0.806 6.2 0.310 0.020 
MLP (40) 0.852 0.818 0.807 8.2 0.310 0.020  

Table 6 
The accuracy score of the final prediction based on four fusion criteria: the 
ranking of case I (Ranking-I), and of case II (Ranking-II), the summation, and 
multiplication.   

Accuracy 

Ranking-I Ranking-II Summation Multiplication 

Precision_1 0.813 0.828 0.846 0.849 
Precision_2 0.761 0.784 0.809 0.811 
Precision_3 0.741 0.769 0.796 0.798  
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doctors who will use the clinical portal as a DDSS. Ninety expert doctors 
who collaborate with Altibbi for providing medical consultations have 
examined the results of the classification model using an online portal 
for doctors. The doctors’ portal shows the consultation and its expected 
diagnoses, hence, the doctors label the accuracy of the diagnoses by four 
levels of precision. If the model produced 100% accurate diagnoses, or if 
it is accurate from 80% to 90%, from 70% to 80%, or from 50% to 60%. 

Furthermore, the qualitative evaluation of the proposed module is 
presented by the pie chart in Fig. 6. The chart shows that most of the 
predicted diagnoses are accurate by the precision of (80–90)% with a 
percentage of 44.9%, while 34.8% of the diagnoses are accurate by a 
level of (70–80)%. Moreover, 10% is accurate by a percentage of 
(50–60)%, and the last 10% is accurate 100%. Markedly, the results of 
the qualitative analysis presented by the experts match the results of the 
quantitative analysis from the proposed module, which indicates the 
robustness of the model and the trustworthiness of predicted diagnoses. 

To illustrate more, one of Altibbi’s doctors received a consultation 
that was a condition of a runny-nose. The possible diagnoses suggested 
by the developed model were two relevant and two irrelevant, the 
relevant diagnoses were the common cold, and allergic rhinitis, 
whereas, the irrelevant were tension headache, and fever. Meanwhile, 
the doctor chose the common cold as the correct diagnosis. However, 
based on the qualitative evaluation of Altibbi’s doctors, the developed 
QSDM model is facing some limitations; first, sometimes the suggested 
diagnosis might have duplicates, for example, suggesting the common 
cold twice. Second, some symptoms might be related to a very common 
condition, but this condition might not be suggested by the model. As in 
the mentioned example, the common cold might not originally be sug-
gested. These limitations might hinder the doctors from making the 
correct decision or make the diagnosis process slower. Therefore, tack-
ling these limitations is essential to improve the developed QSDM 
model. 

5. Conclusion and future work 

Providing a prior, accurate differential diagnosis is hard, since, pri-
marily, at an early stage of a disease the symptoms are unclear and 
overlapping. Developing a computer-aided diagnosis system to help 
clinicians in performing a trustworthy differential diagnosis is of sig-
nificant importance. This article proposed a multimodal machine 
learning-based diagnostic system that helps Altibbi’s doctors in making 
differential diagnosis decisions of clinical consultations. The proposed 
approach is a fusion of two modalities; the symptoms and the questions. 
Various machine learning algorithms have been utilized into the two 
modalities to make a differential diagnosis, this includes the LR, RF, 
SGDClassifier, and different variants of the MLP classifier. The questions 
module has utilized various feature extraction methods (i.e., TF-IDF, 
hashing vectorizer, and document embeddings). The final model rep-
resents a late fusion of two models, where the fusion is performed based 
on various approaches, such as ranking, summation, and multiplication. 
The fusion-based on multiplication achieved the highest performance in 
terms of accuracy (84.9%). In consequence, this can be a promising 
model for a decision support system that can perform a differential 
diagnosis process. However, improving the accuracy of the model is of 
serious importance. The increasing number of consultations in Altibbi 
provides a valuable asset to increase the performance of the proposed 
model. Furthermore, this consequently, increases the structural symp-
tomatic features. Having large-scale data opens additional opportunities 
for applying advanced computational techniques in order to achieve 
higher accuracy, such as deep learning and Transformers methods. 
Moreover, adding the results of diagnostic tests and labs could be a third 
modality that can improve the classification accuracy, and alleviate the 
model’s limitations. 
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