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Abstract: Maintaining a high quality of conversation between doctors and patients is essential in
telehealth services, where efficient and competent communication is important to promote patient
health. Assessing the quality of medical conversations is often handled based on a human auditory-
perceptual evaluation. Typically, trained experts are needed for such tasks, as they follow systematic
evaluation criteria. However, the daily rapid increase of consultations makes the evaluation process
inefficient and impractical. This paper investigates the automation of the quality assessment process
of patient–doctor voice-based conversations in a telehealth service using a deep-learning-based
classification model. For this, the data consist of audio recordings obtained from Altibbi. Altibbi
is a digital health platform that provides telemedicine and telehealth services in the Middle East
and North Africa (MENA). The objective is to assist Altibbi’s operations team in the evaluation
of the provided consultations in an automated manner. The proposed model is developed using
three sets of features: features extracted from the signal level, the transcript level, and the signal
and transcript levels. At the signal level, various statistical and spectral information is calculated
to characterize the spectral envelope of the speech recordings. At the transcript level, a pre-trained
embedding model is utilized to encompass the semantic and contextual features of the textual
information. Additionally, the hybrid of the signal and transcript levels is explored and analyzed.
The designed classification model relies on stacked layers of deep neural networks and convolutional
neural networks. Evaluation results show that the model achieved a higher level of precision when
compared with the manual evaluation approach followed by Altibbi’s operations team.

Keywords: Altibbi; deep learning; feature extraction; telehealth; telemedicine; voice-based signals;
signal processing

1. Introduction

Providing a high quality of service in telehealth is a leading cause of success and
a prime objective for clinicians and providers of telemedicine. Generally, the quality of
telemedicine services can be influenced by various factors related to the patients, the physi-
cians, and the environment. This includes but is not limited to patient cooperation, de-
mographic and health situations, physician satisfaction, and the healthcare system and
resources. Maintaining a high quality of telemedicine services is a subjective process,
and differs among facilities. Some consider it from the perspective of covering the patient’s
needs efficiently and effectively in a way that meets the provider’s satisfaction. Others
have identified that the quality of the service is fulfilled by providing the right service at
the right time, in the right place, for the right patient, for the right price. Further, others
believe that maintaining a high quality of service can be done by delivering the care to
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a degree that exceeds the patients’ expectations [1]. Roughly speaking, to ensure a high
quality of telemedicine services, such systems should preserve the availability, accessibility,
timeliness, privacy, and the confidentiality of service and caring, and should provide re-
sponsive communication, accuracy, reliability, as well as the improvement of patient quality
of life [2]. Quantifying the quality of medical services in the case of recorded consultations
is not easy. In such situations, the recordings contain the voices of the doctor and the
patient, where they might be speaking in different dialects of the language. Meanwhile,
capturing their attitudes, feelings, or reactions based on the recorded audio is challenging.
As the recorded voice is an acoustic signal rich in spectral features and other linguistic and
phonetic structures, Roy et al. intended to assess the quality of medical consultations to
convey the speakers’ attitude [3].

At present, with the epidemiological circumstance of the coronavirus disease (COVID-
19) that the whole world is experiencing, the world is witnessing a rapid increase in
telehealth and telemedicine services. Manually evaluating the quality of a large number
of provided consultations on a daily basis is cumbersome and inefficient. Alternatively,
automating the process of quality evaluation of such services is a substantial challenge
that is sought to reduce efforts and improve the service. Recently, artificial intelligence
techniques, including machine and deep learning methods have been an integral part of
different systems in diverse domains, which intelligently mimic human abilities. The au-
tomation of the quality evaluation process of medical consultations is an example of the
utilization of artificial intelligence in telehealth.

Telehealth platforms have flourished during the COVID-19 pandemic. A well-known
platform in the MENA region is Altibbi (https://altibbi.com, accessed on 5 May 2021). It is
a digital health platform that provides telemedicine and telehealth services for individuals
in the MENA region, where the main language is Arabic. The primary objective of Altibbi
is to make high-quality telemedicine consultations attainable and available to all in the
MENA region. As delivering high-quality care is the core interest of Altibbi, Altibbi’s
Expert Doctors are assigned to provide a structured and constructive evaluation of the
conducted consultations regularly by checking several aspects, such as the doctor’s attitude,
approach skills, how they ask about the patient’s medical history and symptoms, and their
general patient management skills. This process of evaluation is performed manually,
where the Expert Doctors have to listen to a large number of consultations to find the
ones of low quality. For example, they need to listen to 100 consultations to identify
around 20 low-quality consultations. However, since the outbreak of the pandemic, Altibbi
started to witness a dramatic increase in the number of consultations daily (e.g., Altibbi
received around 10,000 consultations per day in Q1-2021). Therefore, automating the
process of quality evaluation will ease the process of finding low-quality consultations
without requiring the operations team to listen to a very large number of consultations.

Motivated by this problem, this paper proposes an approach to automate the process
of consultation evaluation based on deep learning. The recorded consultations in the Arabic
language are stored in audio format. The proposed model analyzes the consultations from
two perspectives: the speech signals, and the transcripts of the consultations. The signal-
based analysis is concerned with extracting various features to encode the waveforms of the
audio in more compact representations. The extraction of features from speech signals can
be performed in the time domain, frequency domain, or time-frequency domain, or they
can be other higher-level features such as homogeneity and timbre. The time-domain
features (the temporal features) extracted from the waveforms usually encompass the
characteristics of amplitude, power, and rhythm features. The frequency-domain features
(spectral features) extracted from the spectrograms reveal information about the chroma,
tonality, brightness, the Fourier transform, and the spectrum shape. Usually, the process
of extracting features is done in several steps, where it is first required to segment the
signal into chunks with overlapping windows, followed by a series of mathematical
transformations and operations to extract the features of interest [4]. In transcript-based
analysis, text-based features are extracted by using neural embedding models. However,

https://altibbi.com


Sensors 2021, 21, 3279 3 of 26

this is subject to different obstacles as the recordings are in Arabic and of different dialects,
where transcribing them to extract text-based features is a challenging process.

Regarding the signal-based analysis, three spectral features are extracted, which
include the Mel-frequency cepstral coefficients (MFCCs), the Mel spectrogram, and the
zero-crossing rate. The objective of the MFCCs and Mel spectrogram is to produce compact
representations of acoustic characteristics of speech which encompass the frequency and
power spectrums. Meanwhile, the zero-crossing rate quantifies the silent (unvoiced)
periods in the conversations. Spectral features are used in different domains to characterize
and sense acoustic signals. For example, the Fourier transform spectrum was used to
recognize faults in motors by analyzing their acoustic signals in [5]. Meanwhile, the time
and wavelet features of signals generated from monitoring sensors were used to identify
the breakage of tools and improve the hole quality in micro-drilling in [6].

On the other hand, conversations are assessed textually by converting the speech into
text and then analyzing it using pre-trained word embeddings and deep convolution neural
network models. The conversion of speech into text is done using Amazon Transcribe,
which is an automatic speech recognition service. The generated transcripts are vector-
ized and modeled using a pre-trained word embedding model for the Arabic language,
“AraVec”, where the objective is to represent the transcripts in a suitable format for the
input of the convolution network. The extracted features are used to formulate a binary
classification problem for the quality prediction of consultations. The extracted features are
utilized in three approaches: one is to analyze the signal-based features alone, the second
is to process the features extracted from the transcripts, and the third is to combine both
as sub-models and combine their output. Two variants of the neural network are utilized,
a deep-stacked neural network and a deep-stacked convolutional network. The convo-
lutional neural network is a type of artificial neural network but uses convolution and
pooling layers to create feature maps. The structure of both models is described in detail in
the methodology section. All models are evaluated using the precision, recall, F1-score,
accuracy, and loss, which show encouraging results in the identification of low-quality
consultations compared to the manual approach followed by the operations team.

The key contributions of this paper are as follows.

• We develop a model to automate the quality prediction of medical consultations.
Particularly, the contribution at this point is at the feature engineering and model
development levels. The model combines spectral features from the signals and text-
based features from the transcripts, which will then be used to train different structures
of deep and convolutional learning models.

• We reinforce the advantages of artificial intelligence in telemedicine. The development
of an automatic quality assessment model reduces the effort and time for evaluating
the consultations manually by the operations team. Besides, in pandemic situations
such as the emergent COVID-19 pandemic, such an approach can enhance the quality
of the service and better serve callers (patients).

The rest of the paper is organized as follows. Section 2 presents the related works in
the literature. Section 3 presents the problem description and the motivation for the work.
Section 4 introduces the theories of the used algorithms and concepts. Section 5 illustrates
the methodology, including the dataset, the signal-based approach, the transcript-based
approach, the experimental settings, and the evaluation criteria. Section 6 shows and
discusses the obtained results. Section 7 provides the conclusions and future perspectives.

2. Related Works

Over the years, different studies attempted to automate the process of evaluating the
quality of recorded calls across various domains, such as in telecommunication via call
centers [7]. The quality of phone/recorded calls can be determined from different corner-
stones, including the attitudes of speakers, their cooperation, the correctness of delivered
information, voice tone and sentiment, oral proficiency, communications, and listening
skills. Several studies evaluated the speech status based on the sentiments. For instance,
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Popovic et al. [8] proposed an automatic speech and sentiment detection approach for
multi-party conversations. de Pinto et al. [9] created an emotion understanding model for
recorded speech using deep neural networks and MFCCs vectors. A multimodal approach
for text and audio was developed by Yang et al. [10] to extract the sentiments. Even though
these studies depended only on the sentiment, other aspects should be considered to
formulate the overall quality.

One of the earlier studies concerned with the automatic quality evaluation of calls
without human interactions was conducted by Bae et al. [11]. They proposed a web-based
tool to analyze the voices of customers at a call center to determine when there was a
complaint. Their method relied on statistical and data mining methods to capture patterns
encompassed in voices. In a different context, Takeuchi et al. [12] analyzed calls recorded
from a rental car reservation office to inspect whether a caller would book a car or not by uti-
lizing a trigger segment detection and expression extraction model. Garnier-Rizet et al. [13]
developed a call-based evaluation tool “CallSurf” to enhance the efficiency of quality as-
surance systems in call centers by scoring recorded conversational speeches. The tool
automatically transcribes the recordings and then extracts knowledge to assess their quality.
Besides, Pandharipande and Kopparapu [14] created a new method to identify problematic
conversations in call centers by using the speaking rate feature and modeling conversations
as directed graphs to extract structural features.

In the banking domain, Pallotta et al. [15] utilized an interaction mining approach to
enhance a call center analytic by employing a set of manually transcribed calls. Moreover,
Kopparapu [16] proposed an automatic model for the identification of problematic calls in
call centers. The authors extracted linguistic features from transcribed calls to recognize
abnormal calls. Meanwhile, they referred to the limitations of the transcription process,
as it is not accurate and incapable of identifying emotions accompanying phrases (i.e., if a
phrase is spoken with gratitude or sarcasm). A distributed call monitoring framework was
created by Karakus and Aydin [17] to evaluate the recorded calls of a customer service rep-
resentative. The Hadoop MapReduce framework was used for the analysis, with the calls
dataset transcribed using the Google Speech API. A list of slang words was integrated into
the monitoring model with text similarity methods to label low-quality calls. An automated
speech scoring system was developed by Chen et al. [18] to assess the readiness of English
test takers to join a school where English is the primary language. Different variants of
recurrent and convolutional neural networks were utilized to extract linguistic and acoustic
features (including pitch, intensity, and word duration). Meanwhile, a linear regression
method was used at the final stage to generate the scores. Furthermore, Perera et al. [19]
created automatic evaluation software for assessing the quality of agents’ voices in a contact
center. The aim was to minimize the bias of human evaluators by developing a model
that employed the speech rate, the intensity of the voice, and the emotional state of the
voice. Several non-linguistic features were extracted, such as pitch, zero-crossing rate,
MFCC, and others. Meanwhile, the support vector machine algorithm was used as the
quality-based classifier. A multimodal approach was proposed by Ahmed et al. [20] to
promote the evaluation process of a call center agent. Statistical and spectral features
were extracted from speech using the OpenSmile library, while other text-based features
were extracted from transcripts using a hybrid convolution and recurrent neural network.
Enhancing the transcription criteria and the text-based language modeling are two areas
for improvement to extend their research.

To the best of our knowledge, no previous works studied the automatic quality
assessment of recorded speech/calls in the Arabic language in the telemedicine context.
The challenges associated with processing Arabic transcripts and the lack of medical call
(audio-based) datasets make the problem critical and difficult to implement. This paper
attempts to fill the gap by proposing an automatic quality prediction model for evaluating
the quality of Altibbi’s medical consultations, where the data are collected from Altibbi’s
databases and labeled manually by Altibbi’s expert doctors.
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3. Problem Definition

Altibbi’s Call Doctor service is a primary care telemedicine service available for users
in the MENA region for a low charge. This service aims to address the diagnosis, treatment,
and monitoring of patients by providing patients with immediate and private access to
primary care physicians within the region through GSM conferencing or synchronous chats.

The service aims to provide care as safely and effectively as traditional in-person
visits. Whereas telemedicine might offer convenience and a lower cost alternative from
the patients’ perspective, clinicians are required to deal with a new care delivery module
that limits the amount of information received from patients. As part of Altibbi’s quality
assurance process, consultations are sampled and evaluated based on different criteria,
including the quality of the medical information provided to the user, the doctor’s attitude
and behavior, and if there is a breach of any of Altibbi’s policies which violates the doctor’s
agreement or ethics.

A primary role of “Altibbi Expert Doctors” is to scrutinize the quality of the medical
information presented to the user. Altibbi works with Expert Doctors from different
specialties to monitor, evaluate, and provide regular feedback to Altibbi doctors to improve
the quality of care. All Altibbi doctors are closely monitored for two weeks after they
join Altibbi. All their consultations are viewed and evaluated by experts against defined
measures. If no errors are detected, they are allowed to take a higher number of medical
consultations, and then they are evaluated regularly thereafter. Accordingly, a random
sample is taken for each doctor and sent to the Expert Doctors, in which the experts do
a structured evaluation and send constructive feedback to the doctor. Expert Doctors
evaluate the consultations based on different bases, such as the doctor’s attitude and
skills in problem-solving, taking a comprehensive relative medical history, asking about
symptoms, patient management, reaching a differential diagnosis, and referring the patient
if needed.

Therefore, the Expert Doctors assign a level-of-quality for each evaluated consultation.
These levels were proposed and discussed internally with the doctors by the operations
director to capture the doctors’ overall impression of the quality of the consultation, and to
indicate the severity or harmfulness of the detected mistakes or errors. The levels-of-
quality utilized in the evaluation criteria are as follows. “Excellent” indicates nothing is
missing, or that there are minor points missing which do not influence the final diagnostic
decision. An “Excellent” score is represented by the numerical value “5”. The second level
is “Good” (“4”), where essential points are missing but no harm is done to the patient.
Third is “Acceptable consultation”, labeled by the value“3”. Fourth is “Poor consultation”,
where there incomplete history is obtained and/or weak management is conducted; this
is assigned a numerical value of “2”. Finally, the lowest level is “Very poor consultation”
(“1”), where the doctor engages in wrong and harmful management or prescribes an
incorrect drug.

This evaluation is made in order to aid the medical operations team in recognizing
consultations that need escalation. However, randomly sampling consultations to pinpoint
which of them are of low quality is not an efficient method, and requires the operations
team to listen to a large number of consultations to find the low-quality consultations.
For example, if the percentage of low-quality consultations is 20%, in a random sample
the operations team has to check 100 consultations to find 20 low-quality items in the
best case scenario. However, the operations team needs a smart model to find those
20 consultations. Therefore, a more systematic and automatic procedure is required to
handle this problem, which is the objective of this paper—to build a deep-learning-based
model to assess the quality of consultations and help the operations team in finding the
low-quality consultations.

4. Background

This section gives a brief description of the theories and algorithms needed to imple-
ment the automatic quality approach as presented in the remaining sections. It demon-
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strates the extracted spectral features (including the spectrogram, MFCCs, and the zero-
crossing rate), the process of Amazon transcription for retrieving the consultation tran-
scriptions, and the concepts behind the deep forward neural networks and the convolution
neural networks.

4.1. MFCCs and Mel Spectrogram

MFCCs [21] are a representation of the enclosed envelope of the power spectrum that
manifests the characteristics of the human voice and the vocal tract. These coefficients
characterize the Mel-frequency cepstrum, which is known as the “spectrum-of-a-spectrum”,
and is required to spot the periodic components of a signal in the time domain as peaks in
a new domain referred to as the “quefrency” domain. The process of extracting the MFCCs
consists of several mathematical transformations of the signal from the time domain to
the frequency domain, to the quefrency domain. This comprises the Fourier transform
and the discrete cosine transforms to obtain the log-magnitude representation of the
spectrum [22,23]. The generation of MFCC vectors consists of the following steps:

• Pre-emphasizing the input signal to remove unwanted or high frequencies.
• Framing and windowing the signal, where the objective is to divide the signal into

a sequence of short overlapping frames to ensure that they are stationary, where a
stationary signal reflects the true statistical and temporal characteristics. The win-
dowing is often performed using rectangular windows as the Hamming window that
conceals the potential of distorted segments found at the boundaries of the windows
by smoothing them.

• Applying the Fourier transform of the signals to convert them from the time domain to
the frequency domain to represent them in terms of their statistical and spectral features.

• Applying filter banks (“Mel filters”) to generate frames in the Mel scale.
• Computing the logarithmic value of the magnitude of powers resulted from the

Mel filters.
• Calculating the spectrum of the results produced from the previous step by applying

the discrete cosine transform (DCT) that results in cepstral coefficients as represented
by Equation (1), where n ∈ {0, 1, . . . C-1}, c(n) represents the cepstral coefficients,
and C is the number of MFCCs.

c(n) =
M−1

∑
0

log10(s(m))cos(
πn(m− 0.5)

M
) (1)

Conventionally, the MFCCs are from 8 to 13 features, however, those 13 coefficients
exhibit static features of the respective frames apart. The generation of more temporal
features is done by finding the first and second derivatives of the cepstral coefficients
known as the delta and delta-delta features. Accordingly, the MFCCs are extended
from 13 to 39 coefficients.

The MFCCs have been widely utilized to model the acoustic information of audi-
tory signals over different applications, such as audio content classification and voice
recognition [24–26].

On the other hand, the spectrogram is a visual representation of signal strength in
terms of the signal’s loudness or intensity, which shows the variation of the frequencies of
acoustic signals over time. Often, the frequency is presented on the y-axis and the time on
the x-axis, while the color of the plot reveals the intensity. The utilized spectrogram in this
paper is the Mel spectrogram, where the frequency is mapped and presented in the Mel
scale. Figure 1 displays the process of extracting the spectrogram features from auditory
signals, in which the signals are divided into short overlapping windows, then converted
into the frequency domain using the Fourier transform, then the Mel filter banks are used
to produce the spectrogram envelope.
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Figure 1. The process of extracting the Mel spectrogram from an acoustic signal, where the output of each Mel filter is
summed then combined to create the Mel spectrogram, which is visualized in terms of the amplitude of the frequency
components over time.

4.2. Deep Neural Networks (Convnet)

The deep neural network consists of several layers of neurons that are connected and
structured in a shape that resembles the neural networks of the human brain. It is supposed
to mimic how the information flows and is inferred across the brain, while the structure
of the neural network is intended to decode the input data and extract potential hidden
relationships from it iteratively by tuning the network parameters [27]. Figure 2 shows the
anatomy of the deep neural network. The deep neural network includes the input layer,
the hidden layers, and the output layer, with a set of weights and biases.

The input layer has the values of n features for each instance, which are represented
by the set I = i1, i2 . . . in. The output layer includes the predicted value for j possible labels,
which are represented by the set Y = y1, y2 . . . yj. The hidden layers find the relationships
between the input values I and the output values Y by computing the value for each hidden
neuron at each hidden layer. A neuron has two major mathematical operations; the first is
the summation, and the second is the activation. However, the hidden layers can have a
different or equal number of hidden neurons. For instance, in Figure 2, m neurons can be
observed for one hidden layer, and k neurons can be observed for another layer.

The basic form of the deep neural network calculates the values of the neurons for the
first hidden layer by running an activation function of the sum of products between each
input value I and the weight connecting the input value with the neuron while adding a
bias value. Accordingly, the sum of products is given by Equation 2, where n is the number
of features, i is the input, w is the weight, and b is the bias.

z =
n

∑
x=0

wxix + b (2)

The activation part of a neuron is a linear or non-linear activation function, which is
adopted primarily to generate a non-linear output of the neuron and allows the network to
back-propagate errors and optimizes the parameters. A popular activation function is the
hyperbolic tangent function “tanh”.

Then, the output of each neuron of the first layer is considered as an input value to the
next hidden layer, and so on, until the output layer is reached, which finds the predicted
values of each label. The error values are observed by the difference between the predicted
values and the actual values; meanwhile, the network adjusts the values of the weights
using the back-propagation technique to produce a more accurate relationship between the
input values and the output values.
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Figure 2. The anatomy of a deep neural network model, a is the number of hidden layers.

Deep neural networks have been used by many applications and with different
learning styles, including supervised and unsupervised approaches. These algorithms have
robust capabilities when used to learn from large amounts of data, providing them with
higher generalization power and the ability to handle and process complex datasets [28].
Neural network algorithms have been used in various applications, including intrusion
detection [29,30], speech recognition [31,32], computer vision [33], autonomous cars [34,35],
fraud detection [36,37], and healthcare [38], among others.

A convolutional neural network (CNN) is a type of deep neural network capable of
analyzing data structured in a grid-like format (e.g., images). Meanwhile, CNNs are also
adaptable with text and time-series data since they are one-dimensional grid structures.
Roughly, a CNN is a neural network that applies the convolution operation in at least
one of its layers. Typically, the topology of any CNN network employs convolution and
pooling layers to generate feature maps. However, there is no one standard topology of
CNN structure suitable for any problem. The architecture of a CNN (including the number
of convolution layers, the size of the filters, and pooling layers) relies highly on the type of
problem and the shape and nature of the data.

In general contexts, convolution is a mathematical operation that convolves two func-
tions to generate another one; in the case of a CNN, this is a multiplication operation
of two matrices to create another new matrix. Practically, the input type of a CNN is a
multi-dimensional matrix (“tensor”), while the convolution operation is a discrete oper-
ation presented by the asterisk symbol ∗. It is important to note that the concept of the
convolution operation is identical, and the computation does not differ, regardless of the
size of the input dimension (i.e., one, two, or three dimensions). Equation (3) describes the
mathematical definition of the convolution, where x is a two-dimension input matrix, k is a
two-dimension kernel matrix, n and m are the width and height of the kernel, and f (t) is
the convolution output that is called the feature map.

f (t) = (x ∗ k)(i, j) =
n

∑
i

m

∑
j

x(n, m)k(i− n)(j−m) (3)

In the context of one-dimensional input to the CNN (e.g., text), the length of the input
is the number of words from all sentences fed in batches to the network. The width of
the input matrix equals the embedding dimension of the words. Thus, the width of the
convolution kernel is the same as the embedding dimension size, while its height is variable
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to encompass a different number of words when creating the feature maps. The primary
objective of filters (i.e., convolution kernels) is to act as feature detectors, where each filter
is responsible for extracting a different kind of feature. The resultant feature maps of the
convolution pass through a non-linear activation function, such as the rectified linear unit
(ReLU). The ReLU is a non-linear, non-saturating function that avoids the vanishing problem
of gradients, and simply converts negative values to zero, as shown in Equation (4).

ReLU(x) = max(0, x) (4)

The final stage after the convolution and non-linear activation is the pooling, which is
used as a subsampling operation to reduce the dimensionality while maintaining the most
informative features. The pooling operation might be max-pooling, average-pooling, or sum-
pooling. In max-pooling, the highest value of each produced feature map is preserved,
where the output of the pooling operation is a fixed-length vector that equals the number of
generated feature maps. The same is true for average and sum pooling, where the average
value or the summation is calculated instead of the maximum.

Figure 3 shows the steps of applying the CNN for text. The figure presents an input
sentence of eight words, where the dimension of the word embedding is roughly considered
to be four. A convolution layer is applied to the input embeddings by applying three
filters of size three and a stride value of one. According to the figure, they are presented
by the vectors underneath the three filters, where they are one-dimensional with size 6.
The pooling operation is the maximum value from each feature map, given that the pooling
type is max-pooling. Figure 3A shows the convolution of three filters of size three and
moving one unit of stride at a time, covering three words each time. In contrast, Figure 3B
shows a filter size of two and a stride of one, while Figure 3C presents a filter of size two and
a stride of two. It can be noticed that a different number of feature maps can be generated
for Figure 3A–C with sizes of six, seven, and four, respectively.

A. Word Embeddings

Convolution & Non-
linear Activation

Pooling

w1 w2 w3 w4 w5 w6 w7 w8

w8

w7

w6

w5

w4

w3

w2

w1
Filter

 1
Filter 

2
Filter 

3

B.

C.

w1 w2 w3 w4 w5 w6 w7 w8

Figure 3. Description of the convolutional neural networks. In (A), the filter size is 3 and the stride is 1, (B) the filter size is 2
and the stride is 1, and (C) the filter size is 2 and the stride is 2.

5. Methodology

This section describes the structural implementation of the methodology. Primarily,
it includes a description of the three approaches used, then describes the experimental
setting and the evaluation criteria. The three approaches are: signal-based, transcript-based,
and hybrid-based. The first studies the signals at the level of statistical characterization.
The second converts the audio recordings into text then deploys a deep learning model
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to extract features from the text. The third approach combines the statistical and text-
based features. Figure 4 presents an overview of the methodology, while the following
subsections describe the three approaches in more detail.

Signal-Based
Sub-Model

(Spectral features)

Transcript-Based
Sub-Model

(Textual features)

Hybrid-Based
Model

Evaluation (Precision,
Recall, F1-score,

Accuracy, and Loss)

Recorded
Consultations

Librosa Library

Amazon Transcribe

AraVec
Embedding 

172 Features Signal-based
features

Transcript-based
features

Evaluation

 Evaluation

 Evaluation

Figure 4. A schematic overview of the conducted methodology.

5.1. Data Description

The raw dataset consists of 2,138 labeled recordings of consultations. The consultations
consist of two speakers, the doctor and the patient. The dataset was labeled manually by
the operations team based on predefined quality indicators. The class label is a categorical
attribute that has ordered values from 1 to 5 that indicate the quality, where 5 refers to the
highest quality. The dataset is multi-class and highly imbalanced, hence, another version
of the dataset was constructed where the class label is binary. Thereby, the fourth and fifth
classes were combined into a single class representing the negative class, comprising the
recordings of high quality. The first, second, and third classes were combined into the
positive class, which refers to the recordings of low quality.

The retrieved recordings from the database needed to be processed and formulated in
a shape that can be accepted by the machine/deep learning algorithms. Therefore, two
different feature sets were extracted from the recordings: which are spectral and text-based
features. To illustrate, the recordings were fed into different algorithms to extract various
statistical and spectral attributes from the acoustic signals of the recordings. Additionally,
the recordings were transcribed, and text-based features were extracted from the transcripts.
The spectral features of the signals include the Mel spectrogram, MFCCs, ZCR, and other
meta-features which indicate the ratio of symptom words, the ratio of stopwords, and the
number of tokens. On the other hand, the text-based features were extracted based on the
word embedding model using the “AraVec” model. Hence, each recording was substituted
by 172 spectral features and features from the embeddings (of a length depending on the
embedding dimension), while the last column of the dataset represents the class label.

5.2. Signal-Based Approach

The processed signals were audio recordings of medical consultations carried out by
Altibbi’s doctors and patients. The duration of a recording was maximally 20 min, where
they were sampled at 8,000 Hz, and they were monophonic (one channel). Extracting
spectral features from the speech signals demands that they be prepared in an appropriate
form. Hence, the recordings were divided into segments of a length of 60 s. Three distinct
types of features were extracted from each segment, then averaged over; in other words,
audio of 15 min was divided into 15 segments, each of 1 min duration. The number of
samples in each segment is given by Equations (5)–(7). In Equation (5), the total number
of samples in a recording is defined by the duration of the recording multiplied by the
sampling rate. Equation (6) computes the number of segments needed to divide the audio,
which is measured in seconds. Equation (7) calculates the number of samples per segment.
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No. o f samples = sampling_rate× duration (5)

No. o f segments =
duration (s)

segment length (s)
(6)

Samples per segment =
samples per audio
No. o f segments

(7)

Accordingly, all segments have the same number of samples except the last one that
has all the remaining samples of the division operation. The features extracted from the
15 segments were averaged and the resulting average vector represented the corresponding
audio file.

5.2.1. Feature Extraction

Essentially, three different types of features were used, and are widely used in the
literature with audio analysis: the MFCCs, the spectrogram, and the zero-crossing rate.
Three other manually computed features were also used, which are the number of tokens
in the audio transcript, the ratio of symptom words in the transcript, and the ratio of
stopwords. The MFCCs features were subject to 40 features resulting from 40-band filter
banks. Those features were the MFCCs, the delta, and delta-delta features that reveal
the rate and acceleration of the speech. The spectrogram represents the variations of the
frequencies in terms of magnitude or power over time. It is calculated using filter banks that
simulate the perception scale of the cochlea of the human ear (“Mel scale”) by a mapping
from the linear frequency domain to the perceptual (non-linear) domain (see Equation (8)).

Mel( f ) = 1, 127× log2(1 +
f

700
) (8)

These filters are short-time Fourier transform (STFT) filters that dissect the signals into
components of frequency sub-bands at a certain time. The window size of the STFT filters
was 128 samples, resulting in a spectrogram of 128 pins of frequency, where the number
of filters was 2048, the hop-length was 512, and the window type was Hann. The Mel
spectrogram acted as a feature extractor, where the resulting vector of 128 bins represented
the spectral information that could be modeled in the same way by the human ear and
match the resolution of the human auditory system.

The zero-crossing rate feature encompasses the rate of change of the signal between
positive and negative values, which means how many times the signal crosses the x-
axis. This was utilized to manifest the silent periods during the consultation, given that
unvoiced speech signals have a high value of the zero-crossing rate. It was calculated with
a frame-length of 2048 and a hop length of 512. Nonetheless, three additional features were
also extracted, which are meta-features depending on the transcripts of the consultations.
The first shows the number of unique tokens in the respective transcript to represent
the length of the consultation. The second presents the ratio of symptom words in the
transcript. The symptom terms were retrieved from the database and searched for in
transcripts, and calculated by Equation (9), where the number of symptoms is the matched
symptoms with the list of symptoms retrieved from the database in the corresponding
audio transcript, and the unique tokens of the corresponding transcript, as well. The ratio
of symptom words can indicate the quality, where the doctor identifies the symptoms for
the diagnosis.

Symptomratio =
No. o f symptoms

No. o f unique tokens
(9)

Finally, the third feature was the ratio of stopwords in a transcript. It was calculated
by dividing the number of stopwords over the number of unique tokens in the respective
transcript. This is intended to reveal how much the conversation diverts from giving
useful information. Figure 5A shows the process of constructing the dataset based on the
MFCCs, Mel spectrogram, zero-crossing rate (ZCR), and the meta-features of the number
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of tokens, the ratio of symptom words, and the stopwords ratio. Figure 5B shows the
constructed deep learning model to process the signals (this is discussed further in the
following subsection).

ZCR

60 s 60 s 60 s

MFCCs Mel-
Spectrogram ZCR Meta-

Features

Average

Dataset

=    [ [1, 172],  1]

=    [ [1, 172],  0]2,138

Dataset

Stack
1

16,
 ReLU,

Dropout

Stack
2

32,
 ReLU,

Dropout

Stack
3

64,
 ReLU,

Dropout

Stack
4

128,
 ReLU,

Dropout

Stack
5

256, 
 ReLU,

Dropout

Output Softmax
Layer 

A. B.

Figure 5. An illustration of implementing the first approach. In (A), the dataset is preprocessed and
created, while (B) shows the utilized DNN model.

Figure 6 depicts the signal of a consultation in the time domain in terms of the ampli-
tude over the time represented in seconds, then the ZCR representation of it, the MFCCs
vectors, and finally the spectral envelope, which shows the frequency over time.

Figure 6. A representation of a consultation’s acoustic signal. The first plot is the signal in time domain, the second is the
ZCR, the third shows the MFCCs (showing the first 8 coefficients), and the fourth is the spectrogram representation.
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5.2.2. Model Structure

The resulting dataset for signal-based analysis contains 172 features of the MFCCs,
the Mel spectrogram, the zero-crossing rate, and the other three meta-features. Meanwhile,
the number of consultations that were labeled and retrieved is 2,138. The classes indicate the
quality of the consultations in a range from 1 to 5. The prepared dataset was divided into
three sets: the training, the testing, and the validation dataset. The training and validation
data were used to train and tune a stack of the deep feed-forward neural network with a
different number of neurons at each layer, as shown in Figure 5B. The stacked layers were
of different sizes of 16, 32, 64, 128, and 256, which were also dropped out by a ratio of 25%
to avoid overfitting. Each layer was activated by the ReLU function and regularized by a
L1-regularizer that regulated the network’s weights to avoid overfitting. The last layer of
the network was a Softmax layer that generated the probabilities of each class. The Softmax
function is given by Equation (10), in which z is the weighted sum of the input at layer
l, j represents the number of neurons at the current layer, and k indicates the number of
neurons in the previous layer.

al
j =

ezl
j

∑k ezl
k

(10)

5.3. Transcript-Based Approach

This approach studies the quality of the consultations by analyzing their transcripts.
The transcripts of the consultations were extracted using Amazon, where they were then
processed and text-based features wree extracted. The constructed dataset based on the
transcripts was then used to train a hybrid convolution neural network and feed-forward
neural network model. This is illustrated in detail in the following subsections.

5.3.1. Feature Extraction

Firstly, extracting the transcripts of consultation recordings was done using the Ama-
zon transcription service (“Amazon Transcribe”). Figure 7 presents the steps of calling
Amazon APIs. Particularly, this requires storing the consultations in Amazon’s Simple
Storage Service (S3), then connecting to Amazon via secret and access tokens. The results
of calling the APIs are text presented in “JSON” format, while the resulting transcripts
are prepared for feature extraction. The extraction of text-based features from transcripts
was performed by a pre-trained word embedding model called “AraVec” [39]. AraVec is
an open-source pre-trained set of models for word embedding for Arabic NLP. AraVec
encompasses twelve different models based on the Arabic language and data collected
from Twitter and Wikipedia. The total number of used vocabularies for the development of
AraVec was 3,300,000,000, where all were utilized to create two types of word embedding:
the skip-gram and continuous bag-of-words (CBOW) models. The word embedding in
the deep learning model was implemented by an embedding layer. The embedding layer
acted as a lookup table with input and dimension lengths. The input length was the size of
the unique vocabulary of a transcript (the length of a sequence). Whereas, the dimension
length was a hyperparameter specifying the length of the embedding. Indeed, each word
in the transcript had an embedding representation characterizing its context and semantics.
In this regard, the pre-trained model used in this approach was the one trained on Twitter
with either skip-gram or CBOW structures.

Input

Recorded
Consultations

Connect to
Amazon

S3 -
Consultation
Recordings

Transcribe-
API (Audio-to-

Text)

Transcription
Texts (json)

Transcripts
Vectorization

(AraVec)

Amazon Transcribe

 Output

Figure 7. The process of converting the acoustic recordings into text and then extracting text-based features using AraVec.
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5.3.2. Model Structure

The new dataset comprises 2,138 labeled consultations with text-based features ex-
tracted from the transcripts based on AraVec. The training and validation parts of the
dataset were used to train a hybrid model comprising convolutional neural networks and
deep feedforward neural networks, as illustrated in Figure 8. The model had four stacked
convolution layers, then a fully connected dense layer. The first two convolution layers had
32 filters with size 5 followed by max-pooling, dropout, and batch normalization layers,
while the second two layers had 64 filters of size 5 and max-pooling, dropout, and batch
normalization layers, as well. All were activated by the ReLU function, while the batch
normalization was intended to normalize the input at each layer and regulate the gradients
through layers. The output of the convolution was flattened to match the input format of
the following dense fully connected layer with 400 neurons. The last layer was the output
layer, which had two neurons for generating the predictions of the classes based on the
Softmax function.

1st Conv. 2nd Conv. MP and BN 3rd Conv. 4th Conv. MP and BN Flattening Dense Layer

Em
be

dd
in

g 
La

ye
r

Output
Layer 

Figure 8. The structural design of the second approach. MP is the max-pooling operation, and BN is the batch normalization layer.

5.4. Hybrid Approach Combining Spectral Features and Transcript Features

The hybrid approach combines the statistical (spectral) features of acoustic signal-
based consultations and the text-based features extracted from the transcripts. This hybrid
dataset was split into training, validation, and testing, where the validation data were
used to optimize the created model, and the testing dataset was used to evaluate the
model. Figure 9 shows the structure of the developed model, which mainly combines the
signal-based and the transcript-based models and their outputs, where the first submodel
is a stacked DNN, and the second submodel is a stacked Conv1D-DNN. The concatenation
of the outputs from the two submodels was done by adopting a concatenation layer that
takes a list of tensors and outputs a single tensor. The output of the concatenation layer
was fed into two stacked dense layers, where both had 128 neurons. The last layer was the
output layer to produce the probabilities of the output classes.

C
on

ca
te

na
tio

n
La

ye
r

Sub-Model 2

Transcripts

Conv1D-DNN

Sub-Model 1

Spectral Features

DNN

Figure 9. The structure of combining the two approaches of the signal-based submodel and the
transcript-based submodel.
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5.5. Experimental Settings

Regarding the system and hardware settings, the operating system used was Ubuntu
(18.04), the development platform was PyCharm IDE, the processor was an Intel(R)
Core(TM) i7-1065G7 CPU, and the random access memory (RAM) was 20 GB. The Python
language environment was version 3.7 and the deep learning framework used was Ten-
sorFlow [40] based on Keras APIs. All consultation recordings (the digital signals) were
processed, analyzed, and features extracted using the Librosa library [41].

For the embedding model, the utilized models were deployed at dimension 300 of
AraVec pre-trained models using the Gensim library [42]. Preparation of the textual tran-
scripts consisted of various processes, including padding texts using the “Post” parameter
to the maximum length of all transcripts. Further, all values were normalized using the
min–max approach. Meanwhile, the DNN and Conv1D-DNN models were developed
using a sequential stack of layers. The proposed models were trained using 60% of the
data and were validated and tested using two different distinct subsets, each of which
represented 20% of the data. The models were trained using the “Binary_crossentropy” loss
function. The weights of the network were learned using an adaptive learning optimizer,
which represents the adaptive moment estimation (“Adam”) optimizer. The optimizer’s
learning weight parameter was set to a fixed learning rate of 5 × 10−6. This learning rate
was chosen based on multiple experiments at different learning rates from 10−3 to 10−8,
where the best performance was obtained when the learning rate was 5 × 10−6. Moreover,
the training was conducted using the batch strategy, which was adopted with a size of 128.
Additionally, as the data was imbalanced and the minor class was the class of interest, it
was handled utilizing a cost-sensitive approach that uses weight parameters for each class,
where they act as penalty parameters while training.

5.6. Evaluation Criteria

Different evaluation measures were utilized for the assessment of the designed model:
precision, recall, F1-score, accuracy, and loss of the optimizer. The metrics were calculated
and presented in terms of the macro-average, and for the positive class. The accuracy was
considered to be the ratio of correct predictions over the total number of consultations (ns),
as defined in Equation (11), where y is the actual value of consultations (i), and ŷ is the
predicted value.

Accuracy(y, ŷ) =
1
ns

ns−1

∑
i=0

1(ŷi = yi) (11)

The macro-recall computes the average recall of each class, for which the recall implies
how much the model can identify the positively classified consultations. The macro-recall is
defined by Equation (12), in which L is the set of all classes, yl is the proportion of predicted
consultations with label l, and ŷl represents the consultations that have true labels.

Recall =
1
|L| ∑l∈L

R(yl , ŷl), R(yl , ŷl) =
|yl ∩ ŷl |
|ŷl |

(12)

Similarly, the macro-precision calculates the mean precision across all classes. In this
case, the precision demonstrates the ratio of correctly identified positive consultations over
the actual number of positive consultations (Equation (13)).

Precision =
1
|L| ∑l∈L

P(yl , ŷl), P(yl , ŷl) =
|yl ∩ ŷl |
|yl |

(13)

The macro F1-score (F1-score) computes the score for each class and then returns their
unweighted average. The F1-score is also known as the harmonic mean of precision and
recall and shows the balance between them. The mathematical formula of the F1-score
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is defined by Equations (14) and (15), where P is the precision, R is the recall, and β is a
weighting parameter.

F1-score =
1
|L| ∑l∈L

Fβ(yl , ŷl) (14)

Fβ(yl , ŷl) =
(

1 + β2
) P(yl , ŷl)× R(yl , ŷl)

β2P(yl , ŷl) + R(yl , ŷl)
(15)

6. Results

This section describes the obtained results of the signal-based approach, the transcript-
based approach, and the hybrid of both. The best results are highlighted in bold typeface.

6.1. Signal-Based Results

This subsection analyzes the results of the prediction of the quality of consultations
based solely on the spectral features. Particularly, the results are discussed over two stages—
first considering the MFCCs alone, and second combining a set of statistical and spectral
features. Table 1 displays the results of quality prediction depending on features obtained
from MFCCs only, where the table shows the precision, recall, and F1-score in terms of
the macro-average, and for the positive class (the consultations of low quality), as well as
the accuracy and loss. The proposed stacked deep learning model was evaluated at six
different learning rates (i.e., 1× 10−3, 5× 10−3, 1× 10−4, 5× 10−4, 1× 10−6, and 5× 10−6).
Regarding the precision, it is clear that the best precision for the positive class and the
macro-average was obtained when the learning rate was 5× 10−4, yielding 52% and 58.8%,
respectively. Meanwhile, there was no obvious trend for the precision with the learning
rate, where decreasing it deteriorated the performance, and increasing it did not result in
better results. The best recall of the positive class was obtained by a value of 100% at a
learning rate of 1× 10−6. The best recall in terms of macro-average was 57.7% and was
achieved at a learning rate of 5× 10−4. The same scenario was seen for the F1-score, where
the highest for the positive class was at 1× 10−6 (57%), and for the macro-average it was
57.7% at 5× 10−4. Regarding the accuracy, the best value (61.4%) was obtained when
the learning rate was 5× 10−4. The minimal loss was 0.688 when the learning rate was
5× 10−3. It can be concluded that when the learning rate was 5× 10−4, the best results in
terms of precision, recall, F1-score, and accuracy were obtained. Thus, further analysis was
conducted in this setting.

Table 1. Comparison of performance measures based on the MFCC features alone (P.C. is the positive class, L.R. is the
learning rate, and Mc. Avg. is the macro-average).

Precision Recall F1-score
Accuracy Loss L.R. Model

P.C. Mc. Avg. P.C. Mc. Avg. P.C. Mc. Avg.

0.000 0.301 0.000 0.500 0.000 0.375 0.601 6.116 1 × 10−3

Stacked
DNN

0.463 0.551 0.438 0.550 0.449 0.551 0.573 0.688 5 × 10−3

0.000 0.301 0.000 0.500 0.000 0.375 0.601 6.116 1 × 10−4

0.520 0.588 0.398 0.577 0.451 0.577 0.614 0.690 5 × 10−4

0.399 0.199 1.000 0.500 0.570 0.285 0.399 9.221 1 × 10−6

0.401 0.502 0.367 0.502 0.384 0.502 0.530 0.692 5 × 10−6

Table 2 presents the performance results of quality prediction when considering the
total number of statistical and spectral features. It is clear from the table that the best-
obtained precision regarding the positive class and the macro-average was when the
learning rate was 5× 10−4, which were 48.5%, and 58.9%, respectively. Meanwhile, at a
learning rate of 5× 10−6, the same macro-precision was obtained (58.9%), while for the
positive class it was slightly less (44.8%). In terms of the recall, the positive class had
100% percent recall at 1× 10−3 and 1× 10−6. Meanwhile, the positive class had 59.2%
macro-recall at 5× 10−4. Regarding the F1-score, the highest of the macro-average was
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58.2% at 5× 10−4, and for the positive class it was 57.8% at 5× 10−6. For the accuracy,
it was best with a ratio of 60.1% at a learning rate of 1× 10−4. For the loss, it was best
obtained at 5× 10−4 with a minimum of 0.691.

Table 2. Comparison of performance measures based on the combination of MFCCs, Mel spectrogram, ZCR, and meta-
features (P.C. is the positive class, L.R. is the learning rate, and Mc. Avg. is the macro-average).

Precision Recall F1-score
Accuracy Loss L.R. Model

P.C. Mc. Avg. P.C. Mc. Avg. P.C. Mc. Avg.

0.398 0.199 1.000 0.500 0.570 0.285 0.399 9.221 1 × 10−3

Stacked
DNN

0.455 0.557 0.586 0.560 0.512 0.551 0.555 0.695 5 × 10−3

0.000 0.301 0.000 0.500 0.000 0.375 0.601 6.116 1 × 10−4

0.485 0.589 0.625 0.592 0.546 0.582 0.586 0.691 5 × 10−4

0.399 0.199 1.000 0.500 0.570 0.285 0.399 9.221 1 × 10−6

0.448 0.589 0.813 0.575 0.578 0.519 0.526 0.694 5 × 10−6

When comparing the results of the MFCC features alone or the complete set of features
together, it can be seen that they differed slightly. For example, the best precision of the
positive class was obtained when the model relied only on the MFCCs (52%), however,
it was 48.5% for the complete set of features. However, if considering the macro-average
of the F1-score, it was better in the case of the total set of features (58.2%), and for the
MFCCs it was 57.7%. Figure 10 shows the confusion matrices represented as heatmaps of
the best-obtained models when considering the MFCCs (Figure 10a), or the total number
of spectral features (Figure 10b). The x-axis is the predicted labels, and the y-axis is the
true labels.
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(b)
Figure 10. The heatmap representation of the confusion matrix of the best models obtained from using the MFCCs alone (a)
and using the combination of all spectral features (b).

6.2. Transcript-Based Results

This subsection discusses the results obtained from the features extracted based on the
created transcripts from Amazon’s Transcribe. Table 3 shows the performance results of the
proposed “Conv1D-DNN” based on four different embedding models (Twitter or Wiki at
CBOW or SG) at different embedding dimensions (100 or 300) and different learning rates
(1× 10−4, 5× 10−4, 5× 10−6). Regarding the precision, the best-attained precision of the
positive class was 44% from AraVec-Twitter-CBOW when the embedding dimension was
100 and the learning rate was 5× 10−6. In this setting, in contrast, the recall and F1-score
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were 9.6% and 15.8%, respectively. For the macro-averaged precision, the model performed
best (67.8%) when the embedding model was AraVec-Twitter-SG and the dimension was
300 at a learning rate of 5× 10−4. Markedly, other embeddings could achieve reasonably
good results. For instance, Twitter-CBOW (dimension=100) had 54.6%, Twitter-CBOW
(dimension = 300) achieved 50.1%, and WiKi-CBOW (dimension = 100) achieved 51.8%.

Regarding the recall, for the positive class different models achieved 100% (e.g.,
Twitter with CBOW or SG structures) at both dimensions, and the WiKi-SG achieved
this at dimension 100. Further, the Twitter-CBOW (dimension = 300) achieved a recall
of 54.4%. In terms of the macro-average of recall, even though all the models achieved
relatively similar results with slight differences, WiKi-CBOW at dimension 100 achieved
the best with a percentage of 51.9%. Regarding the F1-score, Twitter-SG outperformed the
others, even though Twitter-CBOW achieved a very similar result. Twitter-SG attained
an F1-score of 52.5% for the positive class at dimension 300 and learning rate of 5× 10−4.
Meanwhile, WiKi-CBOW at dimension 100 was best in terms of macro-average (51.8%).
Considering the accuracy, Twitter-CBOW (300), Twitter-SG (100 and 300), and WiKi-(SG
and CBOW) at dimension 100 achieved the best results of 64.5%. However, Twitter-CBOW
(100) and WiKi-SG (100) accomplished slightly less, reaching 63.6%. The minimal loss
values were achieved with Twitter-CBOW of dimension 300, with a value of 3.297. Roughly
speaking, all models achieved relatively similar results, but if we consider the precision of
the positive class then Twitter-CBOW (100) was the best, while if we consider the F1-score
of the positive class then it was Twitter-SG with dimension 300. Therefore, the two models
were evaluated further at different vocabulary sizes, and the results are presented in Table
4.

Table 3. The results of adopting the transcripts only by using the Conv1D-DNN model at different embedding models
and dimensions, and at different learning rates, regarding the precision, recall, and F1-score of the positive class and the
macro-average of the classes (E.D. is the embedding dimension).

Embedding Model
Precision Recall F1-score

Accuracy Loss E.D. L.R.
P.C. Mc. Avg. P.C. Mc. Avg. P.C. Mc. Avg.

AraVec-Twitter-
CBOW 0.355 0.178 1.000 0.500 0.524 0.262 0.355 71.637

100
1 × 10−4

AraVec-Twitter-
CBOW 0.355 0.178 1.000 0.500 0.524 0.262 0.355 6.494 5 × 10−4

AraVec-Twitter-
CBOW 0.440 0.546 0.096 0.514 0.158 0.463 0.636 4.999 5 × 10−6

AraVec-Twitter-
CBOW 0.355 0.178 1.000 0.500 0.524 0.262 0.355 82.690

300
1 × 10−4

AraVec-Twitter-
CBOW 0.000 0.322 0.000 0.500 0.000 0.392 0.645 4.419 5 × 10−4

AraVec-Twitter-
CBOW 0.356 0.501 0.544 0.501 0.431 0.484 0.489 3.297 5 × 10−6

AraVec-Twitter-SG 0.355 0.178 1.000 0.500 0.524 0.262 0.355 78.438
100

1 × 10−4

AraVec-Twitter-SG 0.355 0.178 1.000 0.500 0.524 0.262 0.355 6.406 5 × 10−4

AraVec-Twitter-SG 0.000 0.322 0.000 0.500 0.000 0.392 0.645 5.240 5 × 10−6

AraVec-Twitter-SG 0.000 0.322 0.000 0.500 0.000 0.392 0.645 84.065
300

1 × 10−4

AraVec-Twitter-SG 0.356 0.678 1.000 0.502 0.525 0.267 0.358 4.355 5 × 10−4

AraVec-Twitter-SG 0.295 0.465 0.114 0.482 0.165 0.446 0.589 3.526 5 × 10−6

AraVec-WiKi-SG 0.355 0.178 1.000 0.500 0.524 0.262 0.355 1.420
100

1 × 10−4

AraVec-WiKi-SG 0.000 0.321 0.000 0.495 0.000 0.390 0.639 5.856 5 × 10−4

AraVec-WiKi-SG 0.000 0.322 0.000 0.500 0.000 0.392 0.645 4.662 5 × 10−6

AraVec-WiKi-CBOW 0.000 0.322 0.000 0.500 0.000 0.392 0.645 79.096
100

1 × 10−4

AraVec-WiKi-CBOW 0.000 0.322 0.000 0.500 0.000 0.392 0.645 6.471 5 × 10−4

AraVec-WiKi-CBOW 0.378 0.518 0.395 0.519 0.386 0.518 0.555 5.008 5 × 10−6

Table 4 shows the results of considering the features extracted from the transcripts
with two different embedding models: Twitter (SG and CBOW) and WiKi-CBOW, which
were superior to the other models, as shown in the previous table. In this table, three
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vocabulary sizes were evaluated: 9000, 18,000, and 27,000 of the most frequent words.
Regarding the precision of the positive class, the best results were obtained with AraVec-
Wiki-CBOW at dimension 100, with a value of 36.5%. For the macro-average, the best
value was obtained by AraVec-Twitter-SG (300) with a value of 62.6%. It can be seen
that AraVec-WiKi-CBOW could also achieve a relatively very good macro-average of
precision (55.8%). Considering the recall, the best-obtained result for the positive class was
100%, obtained by AraVec-Twitter (CBOW or SG) at dimension 100, when the vocabulary
size was 9,000. However, WiKi-CBOW and Twitter-SG accomplished high results for the
positive class (99.1%). Regarding the macro-average of recall, the best results were obtained
for the WiKi-CBOW when the vocabulary size was 27,000, with a value of 52%. Other
models at various vocabulary sizes achieved similar results, even though there was no clear
increasing or decreasing trend of recall when the vocabulary size of the embedding layer
was changed. Investigation of the performance in terms of the F1-score shows that Twitter-
SG performed the best, with a score of 53.1% for the positive class at a vocabulary size of
9,000. However, the other models at vocabulary size 9,000 accomplished similar results,
about 52%. Considering the macro-average of the F1-score, the best results were obtained
by Twitter-CBOW (100), with a value of 44.3%. In terms of accuracy, Twitter-CBOW and
Twitter-SG (100 and 300) achieved the best result of 64.5%. Regarding the loss, the best was
achieved by Twitter-SG (300), with a value of 4.556. Roughly, considering the results of the
F1-score, we can say that Twitter (CBOW or SG) at dimensions 100 and 300, respectively,
performed the best.

Table 4. The results of adopting the transcripts only by using the Conv1D-DNN model at a learning rate of 5 × 10−4, and at
varying vocabulary sizes (E.D. is the embedding dimension).

Vocabs
Size Embedding Model

Precision Recall F1-score
Acc. Loss E.D.

P.C. Mc. Avg. P.C. Mc. Avg. P.C. Mc. Avg.

9000
AraVec-Wiki-CBOW

0.355 0.511 0.991 0.500 0.523 0.271 0.358 5.834
10018,000 0.261 0.449 0.053 0.485 0.088 0.420 0.611 6.895

27,000 0.365 0.558 0.939 0.520 0.526 0.352 0.399 5.139

9000
AraVec-Twitter-CBOW

0.355 0.178 1.000 0.500 0.524 0.262 0.355 6.211
10018,000 0.361 0.510 0.728 0.509 0.483 0.443 0.445 6.244

27,000 0.000 0.322 0.000 0.500 0.000 0.392 0.645 6.414

9000
AraVec-Twitter-SG

0.362 0.626 0.991 0.515 0.531 0.302 0.377 4.556
30018,000 0.276 0.456 0.070 0.484 0.112 0.429 0.604 5.237

27,000 0.356 0.504 0.868 0.502 0.505 0.365 0.396 4.713

9000
AraVec-Twitter-SG

0.355 0.178 1.000 0.500 0.524 0.262 0.355 6.036
10018,000 0.000 0.322 0.000 0.500 0.000 0.392 0.645 6.096

27,000 0.000 0.322 0.000 0.500 0.000 0.392 0.645 5.870

Figure 11 shows heatmap representations of the best-performing models based on the
transcript-only approach. Figure 11a shows Twitter-CBOW (dimension = 100). Figure 11b
shows Twitter-SG at dimension 300, while Figure 11c presents WiKi-CBOW at dimension
100. It can be seen that Twitter-CBOW (100) gave the maximum balance of the true positive,
true negative, false positive, and false negative. Hence, this model was selected for any
additional experiments.
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Figure 11. A heatmap representation of the confusion matrices of the best models from the transcript-
based approach with different embedding models.
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6.3. Hybrid-Based Results

This subsection discusses the results of combining the features from the transcripts
and from the signals analysis (spectral features). Twitter-CBOW (100) and Twitter-SG (300)
were used to process the data from the transcripts, while all statistical and spectral features
were used from the signal-based part. Table 5 shows the results of the hybrid model at a
vocabulary size of 9,000, or when considering all the vocabularies, at different learning
rates (5× 10−4, 9× 10−4, and 5× 10−5) and different batch sizes (125, 64, and 32). The last
three experiments were considered with all the vocabularies, and at three different epochs
(30, 50, and 100). When the embedding weights were trainable, the embedding model
was Twitter-CBOW, the embedding dimension was 100, the learning rate was 5× 10−5,
and the batch size was 128. Regarding the precision, the best obtained precision of the
positive class was 41.1% for Twitter-CBOW (dimension = 100) with a learning rate of
5× 10−5 and batch size of 64. For the macro-average, it was best (51.3%) for Twitter-CBOW
(100) when the learning rate was 9× 10−4 with a batch size of 32. In terms of the recall,
the Twitter-SG achieved better results (100%) when the vocabulary size was 9,000 at either
9× 10−4 or 5× 10−5 learning rates, and with all vocabularies when the learning rate was
5× 10−4. The best recall in terms of the macro-average was 51.3% and accomplished by
Twitter-CBOW (100) at a learning rate of 5× 10−5 with a batch size of 64. For the F1-score
of the positive class, the best was obtained in similar conditions to the recall, but the best
value was 57%. Additionally, the best F1-score of the macro-average was 50.7% with
Twitter-CBOW (100) and the learning rate was 5× 10−5 with a batch size of 64. Moreover,
regarding the accuracy, the best-obtained percentage was 60.1% for Twitter-CBOW (100)
with a learning rate of 9 × 10−4 and a batch size of 128. The minimal loss was 0.932,
obtained by Twitter-CBOW (100) with a learning rate of 5× 10−5 and a batch size of 128.
It can be concluded from the table that increasing the number of epochs with trainable
embedding weights did not improve the performance of the model.

Table 5. The results of the hybrid approach using the transcript features and spectral features using AraVec-Twitter with
different embedding model structures (E.M.s), different E.D., embedding weights (E.W.s), L.R.s, and batch sizes (B.S.s).

Vocab
Size E.M.

Precision Recall F1-score
Acc. Loss Epochs E.W. E.D. L.R. B.S.

P.C. Mc. Avg. P.C. Mc. Avg. P.C. Mc. Avg.

9000
SG 0.000 0.299 0.000 0.495 0.000 0.373 0.595 2.085

30 Non 300
5 × 10−4

128SG 0.399 0.199 1.000 0.500 0.570 0.285 0.399 11.683 9 × 10−4

SG 0.399 0.199 1.000 0.500 0.570 0.285 0.399 2.299 5 × 10−5

All
SG 0.399 0.199 1.000 0.500 0.570 0.285 0.399 2.020

30 Non 300
5 × 10−4

128SG 0.000 0.301 0.000 0.500 0.000 0.375 0.601 11.685 9 × 10−4

SG 0.394 0.322 0.977 0.491 0.562 0.286 0.393 2.162 5 × 10−5

All
CBOW 0.400 0.501 0.250 0.501 0.308 0.488 0.551 3.315

30 Non 100
5 × 10−4

128CBOW 0.000 0.301 0.000 0.500 0.000 0.375 0.601 11.616 9 × 10−4

CBOW 0.383 0.387 0.891 0.469 0.535 0.309 0.383 2.452 5 × 10−5

All
CBOW 0.377 0.483 0.336 0.484 0.355 0.483 0.514 1.908

30 Non 100
5 × 10−4

64CBOW 0.408 0.510 0.586 0.511 0.481 0.495 0.495 11.623 9 × 10−4

CBOW 0.411 0.512 0.523 0.513 0.460 0.507 0.511 1.524 5 × 10−5

All
CBOW 0.397 0.489 0.898 0.496 0.550 0.355 0.414 1.256

30 Non 100
5 × 10−4

32CBOW 0.404 0.513 0.820 0.509 0.541 0.42 0.445 11.636 9 × 10−4

CBOW 0.399 0.499 0.844 0.500 0.541 0.394 0.430 1.205 5 × 10−5

All
CBOW 0.368 0.465 0.523 0.464 0.432 0.451 0.452 2.818 30

Trainable 100 5 × 10−5 128CBOW 0.368 0.477 0.305 0.479 0.333 0.475 0.514 0.932 50
CBOW 0.333 0.449 0.297 0.452 0.314 0.450 0.483 1.447 100

Figure 12 shows the convergence curves of the best models obtained from each
approach: the signal-based, the transcript-based, and the hybrid model. The convergence
shows the epochs on the x-axis and the accuracy on the y-axis. The convergence is depicted
for training (black) and validation (blue), the signal-based is shown for 50 epochs, and the
transcript-based/hybrid models plotted over 30 epochs. From the figure it is clear that the
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convergence of the signal-based approach had an obvious increasing trend up to thirty
epochs then the model started to slightly overfit. For the transcript-based and hybrid
approaches, the models did not converge smoothly. Furthermore, Figure 13 shows the
convergence in terms of the loss. Regarding the signal-based approach, the model showed
a highly fluctuating convergence trend over the course of epochs, even though it was
exhibiting a decreasing behavior. For the transcript-based and hybrid approaches the
curves were smoother than for the signal-based approach, even though the model in the
transcript-based approach was steeper. Moreover, the training and validation of the loss-
convergence curves of the transcript-based and hybrid approaches were very close to each
other, which implies less overfitting.
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Figure 12. The convergence curves in terms of the accuracy of the best models for the three approaches
using the spectral features only, the transcript features only, and the hybrid of both.
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Figure 13. The convergence curves in terms of the loss of the best models for the three approaches of
using the spectral features only, the transcript features only, and the hybrid of both.

From the three approaches, it can be seen that when relying on the signal-based
analysis only, the model obtained the highest precision of 52%. Meanwhile, combining the
features from the signals and the transcripts as in the hybrid approach did not result in a
better precision. Depending only on spectral and statistical features is not able to reliably
judge the quality of the consultations since the speech characteristics differ among people
and depend on many factors, such as gender. However, the transcript-based and the hybrid
models could still obtain good results, even though this behavior is expected since the
transcription process is not optimal and still needs improvement, which in turn would
further improve the precision of the transcript-based and hybrid models. Additionally,
increasing the dataset size might improve the performance.

7. Conclusions

This paper presented a deep learning approach for assessing the quality of medical
consultations based on recordings stored and labeled by the Altibbi company. The au-
tomatic assessment of consultations is important in order to maintain a high quality of
service and to decrease the time needed to listen to the recorded consultations and grade
them. This paper proposed an automatic quality assessment model for Altibbi’s auditory
consultations based on three approaches: a signal-based model, a transcript-based model,
and a hybrid one. The signal-based approach extracted different spectral and statistical
features and fed them into the stacked layers of a neural network. For the transcript-
based approach, the text-based features were extracted from transcripts using pre-trained
embedding models and fed into the stacked layers of convolution and deep neural net-
works. We also evaluated a model which was the hybrid of the two (signal-based and
transcript-based). All conducted experiments were evaluated in terms of the precision,
recall, F1-score, accuracy, and loss for the positive class, and the macro-average of the two
classes. The signal-based approach achieved the highest precision compared to the other
approaches, with a value of 52%. Overall, the proposed models accomplished encouraging,
good results, and they improved the precision of the traditional approach followed by
Altibbi’s operations team. The automatic quality assessment of medical consultations is
important, especially for a complex language such as Arabic. However, it is necessary to
build on this research to improve it, where further areas of development could include
improving the transcription process, increasing the size of the labeled dataset, and imple-
menting advanced language models to handle the transcripts. Additional spectral features
might also be investigated and explored.
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